首页|基于自适应时距的K-ADBiGRU-AM短期风电功率预测方法

基于自适应时距的K-ADBiGRU-AM短期风电功率预测方法

扫码查看
采用传统无监督学习可加强数据之间的相关性,提高模型的时序规律捕捉能力,但同时也会产生不规则时距间隔问题,而忽略时距影响将在一定程度上限制模型的时序预测能力.针对上述问题,提出了一种基于聚类处理和注意力机制的自适应时距双向循环门控神经网络模型(K-means adaptive distanced bidirectional gated recurrent unit attention mechanism,K-ADBiGRU-AM).首先,提出自适应时距算法(Adaptive distanced,AD),既可降低聚类算法产生的不规则时距影响,也能依据不同风电场的数据特征自适应的调整参数.进一步地,将双向门控循环神经网络(Bidirectional gated recurrent unit,BiGRU)与自适应时距算法有机结合,以此有效捕捉不规则时距规律,最后采用注意力机制(Attention mechanism,AM)降低重要信息的丢失概率.算例验证表明,所提模型可以自适应地处理不规则时距信息,并有效提升了模型对于不规则时距的预测性能.
K-ADBiGRU-AM Short-term Wind Power Prediction Method Based on Adaptive Time Spacing
The use of traditional unsupervised learning can strengthen the correlation between data and improve the model's ability to capture temporal patterns,but at the same time,it also generates the problem of irregular temporal spacing,while ignoring the effect of temporal spacing will limit the model's temporal prediction ability to a certain extent.To address the above problems,an adaptive time-distance bidirectional recurrent gated neural network model K-means adaptive distanced bidirectional gated recurrent unit attention mechanism(K-ADBiGRU-AM)based on clustering processing and attention mechanism is proposed.Firstly,the adaptive distanced(AD)algorithm is proposed to reduce the influence of irregular time distance generated by the clustering algorithm and to adjust the parameters adaptively according to the data characteristics of different wind farms.Further,the bidirectional gated recurrent unit(BiGRU)is combined with the adaptive distanced algorithm to effectively capture the irregular spacing pattern,and finally the attention mechanism(AM)is used to reduce the probability of losing important information.The proposed model can handle the irregular spacing information adaptively and effectively improve the prediction performance of the model for irregular spacing.

Wind power predictionadaptive time gapclusteringattention mechanismbidirectional gated recurrent unit

师洪涛、李希彬、丁茂生、高峰、李艺萱、杨静玲

展开 >

北方民族大学电气信息工程学院 银川 750021

风电功率预测 自适应时距 聚类 注意力机制 双向门控循环单元

2024

电气工程学报
机械工业信息研究院

电气工程学报

CSTPCD北大核心
影响因子:0.121
ISSN:2095-9524
年,卷(期):2024.19(4)