首页|人工智能在广电内容推荐系统中的应用

人工智能在广电内容推荐系统中的应用

扫码查看
探讨人工智能在广电内容推荐中的应用,围绕用户画像构建方法和基于内容的推荐方法的优化展开研究.首先,针对用户画像构建,采用矩阵分解等技术,将用户行为转化为特征向量的形式.其次,针对基于内容的推荐方法,引入相似度计算和优化目标的算法.最后,利用Last.fm数据集进行实验验证.实验结果表明,所提出的方法能够有效提高广电内容推荐系统的推荐准确性和个性化水平.
The Application of Artificial Intelligence in Radio and Television Content Recommendation System
This article explores the application of artificial intelligence in radio and television content recommendation, and focuses on the optimization of user profile construction methods and content-based recommendation methods. Firstly, for the construction of user profiles, techniques such as matrix factorization were used to transform user behavior into feature vectors. Secondly, for content-based recommendation methods, algorithms for similarity calculation and optimization objectives have been introduced. Finally, experimental validation was conducted using the Last.fm dataset. The experimental results show that the proposed method can effectively improve the recommendation accuracy and personalization level of the radio and television content recommendation system.

artificial intelligencecontent recommendationuser profilesimilarity

牛怡琴

展开 >

甘肃省甘南藏族自治州南山微波调频电视转播台,甘肃 甘南 747000

人工智能 内容推荐 用户画像 相似度

2024

电视技术
电视电声研究所 中国电子科技集团公司第三研究所

电视技术

影响因子:0.496
ISSN:1002-8692
年,卷(期):2024.48(4)
  • 10