首页|基于轻量化YOLOv5s的安全帽佩戴检测算法

基于轻量化YOLOv5s的安全帽佩戴检测算法

扫码查看
在各种高危行业,人员在施工中佩戴安全帽是很好的安全保护措施之一.为解决检测模型参数大无法在移动端和嵌入式设备部署等问题,提出YOLOv5-MN检测算法用于安全帽佩戴检测.首先,将GhostNet的轻量级模块Ghost引入YOLOv5的主干网络中进行优化,通过将输入特征图分为两个部分,分别进行不同程度的卷积操作,以减少计算复杂度.其次,采用新的特征融合网络结构BiFPN,将不同层级的特征图进行融合,以获取更丰富的语义信息.最后,增加ECA注意力机制,通过在特征图上引入通道注意力模块,动态地调整通道之间的重要程度,以提升模型的感知能力.实验结果表明,轻量化后的YOLOv5模型复杂度显著减小,推理速度大幅提高.
Safety Helmet Wearing Detection Algorithm Based on Lightweight YOLOv5s
Wearing a safety helmet during construction is one of the good protective measures for various high-risk industries nowadays.In order to solve the problem of large model parameters that cannot be deployed on mobile and embedded devices,the YOLOv5-MN detection algorithm is proposed for helmet wearing detection.Firstly,the lightweight module GhostNet is introduced into the backbone network of YOLOv5 for optimization.The input feature map is divided into two parts and convolved to varying degrees to reduce computational complexity.Secondly,a new feature fusion network structure BiFPN is adopted to fuse feature maps at different levels to obtain richer semantic information.Finally,an ECA attention mechanism is added by introducing channel attention modules on the feature map to dynamically adjust the importance between channels,in order to enhance the model's perceptual ability.The experimental results show that the complexity of the lightweight YOLOv5 model is significantly reduced,and the inference speed is significantly improved.

safety helmet wearing detectionimproved YOLOv5sattention mechanismdeep learningtarget detection

高东、刘丽娟

展开 >

大连交通大学 软件学院,辽宁 大连 116028

安全帽佩戴检测 改进YOLOv5s 注意力机制 深度学习 目标检测

辽宁省自然科学基金

2022-MS-341

2024

电视技术
电视电声研究所 中国电子科技集团公司第三研究所

电视技术

影响因子:0.496
ISSN:1002-8692
年,卷(期):2024.48(6)
  • 2