首页|基于海岸线分割的大尺度复杂场景SAR图像舰船检测方法

基于海岸线分割的大尺度复杂场景SAR图像舰船检测方法

扫码查看
机载和星载平台下的传统海岸线分割方法大多依赖人为构造特征或使用形态学手段,往往很难平衡模型泛化能力与分割精度的关系.对此,研究机载和星载平台下的超高分辨率合成孔径雷达(Synthetic Aperture Radar,SAR)成像及其在船舶检测的应用,提出一种基于超像素分割和深度卷积神经网络的海陆分割方法,用深度特征代替人工特征并充分利用SAR图像的纹理、灰度和亮度等特征,在保证模型泛化能力的基础上具有较高的分割精度,为机载和星载平台下的舰船检测任务打下了良好的基础.
Ship Detection in SAR Images of Large-Scale Complex Scenes Based on Coastline Segmentation
Most of the traditional coastline segmentation methods on airborne and spaceborne platforms rely on artificial construction of features or morphological methods,and it is difficult to balance the relationship between model generalization ability and segmentation accuracy.In this paper,we study the ultra-high resolution Synthetic Aperture Radar(SAR)imaging and its application in ship detection on both airborne and spaceborne platforms,and propose a sea-land segmentation method based on super pixel segmentation and deep convolutional neural network.Using depth features instead of artificial features and making full use of the texture,gray and brightness features of SAR images,it has a high segmentation accuracy on the basis of ensuring the generalization ability of the model,which lays a good foundation for the ship detection task on the airborne and satellite-borne platforms.

coastal line segmentationdeep learningneural networkSynthetic Aperture Radar(SAR)

杜孟洋、李龙、李晓华、张鑫、杨旭超、张国栋

展开 >

新疆理工学院 信息工程学院,新疆 阿克苏 843100

海岸线分割 深度学习 神经网络 合成孔径雷达(SAR)

2024

电视技术
电视电声研究所 中国电子科技集团公司第三研究所

电视技术

影响因子:0.496
ISSN:1002-8692
年,卷(期):2024.48(7)
  • 8