首页|基于迁移学习的电视观众分类模型

基于迁移学习的电视观众分类模型

扫码查看
针对智能电视机因无法获取电视观众特征数据导致无法准确地对观众进行分类的问题,提出一个基于迁移学习的电视观众分类模型.先分析用户特征和其喜好的电视节目,并训练基模型,再使用真实的电视观众数据和其喜爱观看的电视节目数据,将基类型迁移到电视观众分类任务中.实验证明,所提模型具有良好的分类准确性.
TV Audience Classification Model Based on Transfer Learning
In response to the problem that smart TV cannot obtain TV audience feature data,which makes it difficult to accurately classify viewers,this article proposes a TV audience classification model based on transfer learning. Firstly,analyze the characteristics of users and their preferred TV programs,and train a base model,then,using real TV audience data and their favorite TV programs,transfer the base type to the TV audience classification task. Experimental results have shown that the proposed model has good classification accuracy.

TV audience classificationtransfer learningdeep neural networks

卢川琴、王国永、张立山

展开 >

山东省广播电视监测中心,山东 济南 250014

电视观众分类 迁移学习 深度神经网络

2024

电视技术
电视电声研究所 中国电子科技集团公司第三研究所

电视技术

影响因子:0.496
ISSN:1002-8692
年,卷(期):2024.48(9)