首页|高功率热驱动热声制冷系统优化设计

高功率热驱动热声制冷系统优化设计

扫码查看
为了提高热声热机功率密度兼顾总热效率,使用DeltaEC软件对二级环路热驱动热声制冷系统进行数值模拟,分析了回热器水力半径和长度对系统的总热效率、发动机热声转换效率以及功率密度、制冷机制冷系数以及功率密度等因素的影响.结果表明,实现高功率密度的回热器水力半径区间为38-76 μm,实现高功率密度的回热器长度区间为10-32 mm,发动机实现高功率密度的最优相位区间为-14.74—-5.63°,制冷机实现高功率密度的最优相位区间为11.132-20.457°.
Optimal design of high power thermal drive thermoacoustic refrigeration system
A numerical simulation of a two-stage loop heat-driven thermoacoustic refrigeration system was conducted to enhance power density of thermoacoustic heat engines using DeltaEC soft-ware while considering total thermal efficiency.The influence of the hydraulic radius and length of the regenerator on the total thermal efficiency of the system,the engine thermoacoustic conversion efficiency and power density,the refrigeration coefficient and power density of the refrigerator was analyzed.The computational results reveal specific intervals conducive to high power density:a hydraulic radius ranging from 38 μm to 76 μm and a regenerator length between 10 mm and 32 mm.Furthermore,the optimal phase intervals for achieving high power density were identified as-14.74--5.63° for the engine and 11.132-20.457° for the refrigerator.

thermoacoustic enginethermoacoustic refrigerationregeneratornumerical simu-lation

张沛、康慧芳、石中伟、姜一帆、沈俊、文靖

展开 >

北京理工大学机械与车辆学院 北京 100081

中国人民解放军32381部队 北京 100071

热声发动机 热声制冷 回热器 数值模拟

国家重点研发计划项目

2022YFB3505103

2024

低温工程
北京航天试验技术研究所

低温工程

CSTPCD北大核心
影响因子:0.568
ISSN:1000-6516
年,卷(期):2024.(2)
  • 15