首页|芯片水冷散热器数值模拟及优化

芯片水冷散热器数值模拟及优化

扫码查看
为了解决数据中心服务器面临的高热流密度及高能耗问题,对比了横向平行长流道、竖直平行长流道、横竖均通十字3种流道结构对芯片的冷却效果,确定最佳流道结构和肋片间距,并对机柜芯片组进行数值模拟,得到了维持芯片组安全工作(70℃)所需最小流量随入口水温的变化曲线.研究结果表明:横向平行长流道的综合散热性能最好,综合性能换热因子提升41.4%;采用横向平行长流道结构,肋片间距为0.3 mm时,芯片散热效果最好;维持芯片组安全工作时,入口温度低于10 ℃时,对流量的需求很小,仅为62.5 g/s,入口温度高于30℃时,流量需求迅速增加,增长幅度高达44.2%,并给出了入口温度和最小流量之间的拟合公式.
Numerical simulation and optimization of chip water-cooled heat sink
In order to solve the high heat flux density and energy consumption problems faced by data center servers,a comparison was conducted among three channel structures for chip cool-ing,including horizontal parallel long channels,vertical parallel long channels and a cross-channel configuration with both horizontal and vertical access.The study aimed to identify the optimal channel structure and fin pitch,numerical simulations were performed on server rack chip assem-blies to determine the minimum flow rate required to maintain the safe operation of chip assemblies(70 ℃)as a function of the inlet water temperature.The results indicates that the horizontal par-allel long channel structure offers the best overall cooling performance,enhancing the comprehen-sive heat transfer factor by 41.4%.With a fin pitch of 0.3 mm in the horizontal parallel long channel structure,the chip cooling is most effective.To maintain safe operation of the chip assem-bly,when the inlet temperature is below 10 ℃,the demand for flow rate is minimal,only 62.5 g/s.However,as the inlet temperature exceeded 30 ℃,the demand for flow rate increases signifi-cantly,with a growth rate of up to 44.2%.The study also provides a fitted formula between inlet temperature and minimum flow rate.

data centerwater-cooled heat sinknumerical simulationchannel structure opti-mization

张迪、陈华、覃海燕

展开 >

天津市制冷技术重点实验室 天津 300134

天津商业大学机械工程学院 天津 300134

数据中心 水冷散热器 数值模拟 流道结构优化

天津市自然科学基金项目

18JCYBJC90300

2024

低温工程
北京航天试验技术研究所

低温工程

CSTPCD北大核心
影响因子:0.568
ISSN:1000-6516
年,卷(期):2024.(2)
  • 11