首页|基于模糊神经网络的氢液化氦气压力PID控制

基于模糊神经网络的氢液化氦气压力PID控制

扫码查看
为了解决氢液化装置氦气压力调节系统超调量大、响应速度慢、调节时间长、控制参数无法在线整定等问题,针对系统具有非线性和时变性的特点,设计了基于模糊神经网络的PID控制器以及基于双曲正切函数的改进型激活函数.仿真结果表明:相比传统PID控制或模糊PID控制,采用模糊神经网络PID控制的系统动态性能显著改善,使得氢液化装置的氦气压力调节更加稳定可靠.
PID control of helium pressure in hydrogen liquefaction based on fuzzy neural network
In order to solve the problems such as large overshoot,slow response,long adjust-ment time and non-on-line tuning of control parameters of helium pressure regulation system in hy-drogen liquefaction plant,PID controller based on fuzzy neural network and improved activation function based on hyperbolic tangent function were designed in view of the nonlinear and time-var-ying characteristics of the system.The simulation results show that compared with traditional PID control or fuzzy PID control,the dynamic performance of the system using fuzzy neural network PID control is significantly improved,which makes the helium pressure regulation of the hydrogen liquefaction plant more stable and reliable.

helium pressure regulation systemfuzzy neural networkPID controlpressure control

李安琪、秦可欣、杨思锋、兰玉岐

展开 >

北京航天试验技术研究所 北京 100074

航天氢能科技有限公司 北京 100070

氦气压力调节系统 模糊神经网络 PID控制 压力控制

2024

低温工程
北京航天试验技术研究所

低温工程

CSTPCD北大核心
影响因子:0.568
ISSN:1000-6516
年,卷(期):2024.(2)
  • 11