首页|贝叶斯模态识别的抗噪能力分析

贝叶斯模态识别的抗噪能力分析

扫码查看
文中旨在通过试验研究,探讨贝叶斯方法在时域加速度数据模态识别中的抗噪能力.采用6DOF质量-弹簧模型,分析噪声对模态参数识别结果的影响.试验结果表明,在噪声比例不超过20%的条件下,贝叶斯方法能够在工程上可接受的范围内准确识别模态参数.这个研究结果对于结构安全性评估和维护决策具有重要意义,促进了贝叶斯方法在工程中的广泛应用.
ANALYSIS OF NOISE ROBUSTNESS IN BAYESIAN MODAL IDENTIFICATION
The aim of this study is to investigate the noise robustness of Bayesian methods in modal identification us-ing time-domain acceleration data.The impact of noise on modal parameter identification of a 6-degree-of-freedom mass-spring model is analyzed.The experimental results demonstrate that Bayesian methods accurately identify modal parameters within an acceptable range for engineering applications when the noise ratio does not exceed 20%.This finding verifies the ability of Bayesian methods to effectively utilize prior information and probability models to extract valuable structural features from noisy data.The demonstrated noise robustness of Bayesian methods in struc-tural dynamic testing has significant implications and promotes the widespread application of Bayesian methods in practical engineering scenarios.

bayesian methodnoise robustnessmodal parameter identification

孙剑、仲伟秋、杨宏、卜延渭、曹聪

展开 >

西安工程大学城市规划与市政工程学院,西安 710048

贝叶斯方法 抗噪性 模态参数识别

国家自然科学基金项目国家留学基金项目

50708011202108610120

2024

低温建筑技术
黑龙江省寒地建筑科学研究院

低温建筑技术

影响因子:0.237
ISSN:1001-6864
年,卷(期):2024.46(2)
  • 13