首页|基于神经网络纳米海工混凝土电阻率预测

基于神经网络纳米海工混凝土电阻率预测

扫码查看
为探究神经网络对混凝土电阻率预测的可行性,文中通过wenner四电极法测量Cl-侵蚀和干湿循环耦合作用下纳米混凝土的电阻率,利用BP神经网络和Elman神经网络对电阻率测量结果进行预测.预测结果表明,BP神经网络的预测效果要优于Elman神经网络,BP神经网络的预测误差更低,其输入和输出变量之间的相关性更强,在混凝土相关研究中利用神经网络具有一定的实用性.
NEURAL NETWORK BASED RESISTIVITY PREDICTION OF NANO-MARINE CONCRETE
This paper investigates the feasibility of neural network for concrete resistivity prediction by measuring the nano-concrete resistivity of under Cl-erosion and dry-wet cycle coupling by Wenner's four-electrode method,for predicting the resistivity measurements using BP neural network and Elman neural network.The results show that BP neural network is better than Elman neural network,as the prediction error of BP neural network is lower,and the correlation between its input and output parameters is stronger.The use of neural networks in concrete relat-ed research has certain practicality.

neural networknano-marine concreteresistivity predictionCl-erosiondry-wet cycle

孙尚辉、张茂花、杨海旭、申忠科、王振

展开 >

东北林业大学土木与交通学院,哈尔滨 150040

北京科技大学土木与资源工程学院,北京 100083

神经网络 纳米海工混凝土 电阻率预测 Cl-侵蚀 干湿循环

2024

低温建筑技术
黑龙江省寒地建筑科学研究院

低温建筑技术

影响因子:0.237
ISSN:1001-6864
年,卷(期):2024.46(2)
  • 18