首页|High-throughput sequencing reveals dietary segregation in Malaysian babblers

High-throughput sequencing reveals dietary segregation in Malaysian babblers

扫码查看
The coexistence of numerous species within a community results from how those species use available resources. Babblers are one of the major groups of Malaysian insectivorous birds, which frequently forage in dense vegetation cover and have a high level of sympatry. Therefore, examining the diet, prey selection, and niche segregation of babblers can be challenging. In this study, we used high-throughput sequencing to investigate potential dietary overlap or segregation among 10 babbler species of the 4 genera of the family Pellorneidae and Timaliidae: Pellorneum, Malacopteron, Stachyris, and Cyanoderma in central peninsular Malaysia. We tested the hypothesis that trophically similar species may differ in resource use to avoid competitive exclusion. We identified 81 distinct arthropod taxa from fecal samples, belonging to 71 families representing 13 orders, which were predominantly from 16 dipteran, 13 lepidopteran, and 10 coleopteran families. Of all the prey taxa con-sumed, 45% were found to be distinct across the 10 babbler species, and <35% were shared simultaneously by ≥3 babbler species, indicating minimal dietary overlap. The black-throated babbler Stachyris nigricollis and moustached babbler Malacopteron magnirostre had the most gen-eralist tendencies because they consumed a greater variety of prey taxa. Small dietary overlap values (Ojk) and a relatively wide range of food resources suggest that dietary segregation occurred among the studied babblers. The great diversity of prey consumed revealed the presence of dietary flexibility among the sympatric insectivorous birds, thus reducing any active dietary competition and facilitating the coexistence through niche partitioning.

coexistencedietary partitioningmetabarcodingnext-generation sequencingtropical insectivorous birds

Mohammad Saiful Mansor、Fasihah Zarifah Rozali、Sian Davies、Shukor Md Nor、Rosli Ramli

展开 >

Department of Biological Sciences and Biotechnology,Faculty of Science and Technology,Universiti Kebangsaan Malaysia,43600 Bangi,Selangor,Malaysia

School of Biological Sciences,Universiti Sains Malaysia,11800 USM Penang,Malaysia

Micropathology Ltd,University of Warwick Science Park,Coventry,CV47EZ,UK

Institute of Biological Sciences,Faculty of Science,University of Malaya,50603 Kuala Lumpur,Malaysia

展开 >

Fundamental Research Grant Scheme(FRGS)Ministry of Higher Education Malaysia

FRGS/1/2020/STG03/UKM/02/5

2022

动物学报(英文版)
中国科学院动物研究所,中国动物学会

动物学报(英文版)

CSCDSCI
影响因子:0.198
ISSN:1674-5507
年,卷(期):2022.68(4)
  • 67