首页|小型闭环无绝缘高温超导线圈失超特性研究

小型闭环无绝缘高温超导线圈失超特性研究

扫码查看
在持续电流模式下工作的闭环高温超导线圈可以消除电流引线引起的巨大漏热,无绝缘绕制技术的应用进一步提高了其热稳定性和失超自保护能力.当闭环无绝缘线圈发生局部热失超时,由于没有外加电源的持续供电,损失的磁能不会被及时补偿.本文建立了电-磁-热耦合模型研究闭环无绝缘线圈发生局部热点失超过程中的电磁暂态行为,系统地揭示了其热失超机制,并提出了衡量闭环线圈宏观失超特性的最终剩余磁场保有率这一概念.基于仿真结果,发现较小的匝间电阻率有助于线圈最大限度地保存磁能,以及在匝间电阻率极小时会出现饱和效应,但最高温升几乎不受匝间电阻率的影响.此外,发现线圈最高温升与热失超能量呈线性关系,而磁能损失随热失超能量的增加而增大,直至线圈中存储的磁能被完全消耗.
Study on quench characteristics of the small-scale HTS non-insulation closed-loop coil
The closed-loop high-temperature superconducting(HTS)coil operating in persistent current mode can elimi-nate the huge heat leakage from current leads efficiently,and the application of non-insulation(NI)winding technology further improves its thermal stability and self-protection ability.When the NI closed-loop coil suffers local heat quench,the lost mag-netic field energy will not be compensated in time because the power supply is eliminated.An electromagnetic-thermal coupling model was established to study the electromagnetic transient behavior of a NI closed-loop coil during quench process,and the thermal quench mechanism was systematically revealed.The concept of final remained magnetic field retention ratio was proposed to describe the macro quench characteristic of the closed-loop coil.Based on the simulation results,it is found that the small turn-to-turn resistivity helps the coil to maximize the preservation of magnetic field energy,and the saturation effect occurs when the turn-to-turn resistivity is very small.But the maximum temperature is almost unaffected by the turn-to-turn resis-tivity.In addition,the maximum temperature has a linear relationship with the heat quench energy,and the loss of magnetic field energy increases with the increase of the heat quench energy until the magnetic field energy stored in the coil is completely con-sumed.

Non-insulation coilClosed-loop coilQuench characteristicsMulti-physics coupling model

李蒙珠、吴蔚、钟卓言、卢力、金之俭

展开 >

上海交通大学电子信息与电气工程学院,上海 200240

无绝缘线圈 闭环线圈 失超特性 多物理场耦合模型

国家自然科学基金

51977130

2024

低温与超导
中国电子科技集团公司第十六研究所

低温与超导

北大核心
影响因子:0.243
ISSN:1001-7100
年,卷(期):2024.52(3)
  • 14