首页|基于Stacking模型的数据中心能效指标预测

基于Stacking模型的数据中心能效指标预测

扫码查看
提出一种基于Stacking集成学习的数据中心制冷系统能效指标预测模型.分别以XGboost、RF、SVR算法建立能效指标基模型,并采用线性回归法构建元模型;分别组合不同堆叠结构,使用K折交叉验证和基于网格搜索法的超参数优化增强模型性能;并引入期望误差百分比(EEP)、平均偏移误差(MBE)及决定系数(R2)三项评价指标检验模型性能.针对北京市某数据中心制冷系统的建模实验表明,所提出的XGboost+RF结构堆叠模型与单一模型相比,各项性能指标提升约5%~19%.
Predicting PUE of data center based on Stacking model
A Stacking integrated learning-based model for data center cooling system energy efficiency index prediction was proposed in the paper.The energy efficiency index base models were established with XGboost,RF,and SVR algorithms,re-spectively,and the linear regression method was used to establish the meta model;the models with different stacking structures were combined separately,and the model performance was enhanced using K-fold cross-validation and hyperparameter optimi-zation based on Grid SearchCV;and the three evaluation indexes of EEP(Expected Error Percentage),MBE(Mean Bias Error)and R2(Coefficient of Determination)were introduced to test the performance of the model.The modeling experiments for a data center cooling system in Beijing show that the proposed stacked model with XGboost+RF structure improves the performance in-dexes by about 5%~19%compared with the single model.

Data centerCooling systemPredictive modeIntegrated learningPower usage effectiveness

魏东、卢鸿健、韩少然

展开 >

北京建筑大学电气与信息工程学院,北京 100044

建筑大数据智能处理方法研究北京市重点实验室,北京 100044

北京京诚瑞达电气工程技术有限公司,北京 100176

数据中心 制冷系统 预测模型 Stacking集成学习 能效指标

国家自然科学基金北京市自然科学基金住建国家重点研发计划

6237103242320212019-K-149

2024

低温与超导
中国电子科技集团公司第十六研究所

低温与超导

北大核心
影响因子:0.243
ISSN:1001-7100
年,卷(期):2024.52(5)
  • 16