首页|平行冷板结霜特性及人工神经网络研究

平行冷板结霜特性及人工神经网络研究

Study on frosting characteristics and artificial neural network of parallel cold plates

扫码查看
为揭示和预测底板温度与翅片间距对平行冷板霜层厚度的影响,进行了不同底板温度(-10~-25℃)和翅片间距(1~3 mm)下的结霜实验,建立了人工神经网络预测模型.结果表明:与-25℃的底板温度相比,底板温度为-10℃时,霜枝交叉耗时延长123.3%,霜层厚度减少30.3%.当翅片间距为3 mm时,霜层厚度呈阶梯状增长,三段线性增长斜率依次递减,分别为1.20×10-6、0.76 ×10-6和0.56×10-6.通过对已构建ANN模型的验证,发现相关系数高达0.999 8,平均绝对相对误差低至1.357 9%,验证了模型的准确性.此外,基于Garson算法对模型输入参数进行敏感性分析,揭示时间因素(占比48.30%)在霜层生长过程中占主导作用.
To reveal and predict the influence of base plate temperature and fin spacing on the frost thickness of parallel cold plates,frosting experiments under different base plate temperatures(-10 to-25 ℃)and fin spacing(1 to 3 mm)were carried out,and an artificial neural network prediction model was established.The results show that compared with the base plate temper-ature of-25 ℃,when the base plate temperature is-10 ℃,the time of frost branch crossing is prolonged by 123.3%,and the frost thickness is reduced by 30.3%.When the fin spacing is 3 mm,the frost thickness shows a step-like increase,and the three linear growth slopes decrease in turn,which are 1.20 ×10-6,0.76 ×10-6 and 0.56 ×10-6,respectively.Through veri-fication of the constructed artificial neural network model,it is found that the correlation coefficient is as high as 0.999 8,and the average absolute relative error was as low as 1.357 9%,which verified the accuracy of the model.In addition,the sensitivi-ty analysis of the model input parameters based on the Garson algorithm reveals that the time factor(accounting for 48.30%)plays a leading role in the frost growth process.

Base plate temperatureFin spacingParallel cold platesFrost thicknessArtificial neural networkGarson al-gorithm

季家东、赵金辉、倪旭旺、潘玉玲

展开 >

安徽理工大学机电工程学院,淮南 232001

底板温度 翅片间距 平行冷板 霜层厚度 人工神经网络 Garson算法

2024

低温与超导
中国电子科技集团公司第十六研究所

低温与超导

北大核心
影响因子:0.243
ISSN:1001-7100
年,卷(期):2024.52(11)