首页|平行冷板结霜特性及人工神经网络研究

平行冷板结霜特性及人工神经网络研究

扫码查看
为揭示和预测底板温度与翅片间距对平行冷板霜层厚度的影响,进行了不同底板温度(-10~-25℃)和翅片间距(1~3 mm)下的结霜实验,建立了人工神经网络预测模型.结果表明:与-25℃的底板温度相比,底板温度为-10℃时,霜枝交叉耗时延长123.3%,霜层厚度减少30.3%.当翅片间距为3 mm时,霜层厚度呈阶梯状增长,三段线性增长斜率依次递减,分别为1.20×10-6、0.76 ×10-6和0.56×10-6.通过对已构建ANN模型的验证,发现相关系数高达0.999 8,平均绝对相对误差低至1.357 9%,验证了模型的准确性.此外,基于Garson算法对模型输入参数进行敏感性分析,揭示时间因素(占比48.30%)在霜层生长过程中占主导作用.
Study on frosting characteristics and artificial neural network of parallel cold plates
To reveal and predict the influence of base plate temperature and fin spacing on the frost thickness of parallel cold plates,frosting experiments under different base plate temperatures(-10 to-25 ℃)and fin spacing(1 to 3 mm)were carried out,and an artificial neural network prediction model was established.The results show that compared with the base plate temper-ature of-25 ℃,when the base plate temperature is-10 ℃,the time of frost branch crossing is prolonged by 123.3%,and the frost thickness is reduced by 30.3%.When the fin spacing is 3 mm,the frost thickness shows a step-like increase,and the three linear growth slopes decrease in turn,which are 1.20 ×10-6,0.76 ×10-6 and 0.56 ×10-6,respectively.Through veri-fication of the constructed artificial neural network model,it is found that the correlation coefficient is as high as 0.999 8,and the average absolute relative error was as low as 1.357 9%,which verified the accuracy of the model.In addition,the sensitivi-ty analysis of the model input parameters based on the Garson algorithm reveals that the time factor(accounting for 48.30%)plays a leading role in the frost growth process.

Base plate temperatureFin spacingParallel cold platesFrost thicknessArtificial neural networkGarson al-gorithm

季家东、赵金辉、倪旭旺、潘玉玲

展开 >

安徽理工大学机电工程学院,淮南 232001

底板温度 翅片间距 平行冷板 霜层厚度 人工神经网络 Garson算法

2024

低温与超导
中国电子科技集团公司第十六研究所

低温与超导

北大核心
影响因子:0.243
ISSN:1001-7100
年,卷(期):2024.52(11)