首页|基于混合深度学习算法的盾构运动轨迹实时预测

基于混合深度学习算法的盾构运动轨迹实时预测

扫码查看
盾构运动轨迹偏移会造成管片错位及地面沉降等危害,本文提出了一种用于盾构掘进过程中轨迹偏差的实时预测深度学习模型。该模型将时域卷积网络(TCN)和控制门单元(GRU)结合起来,并引入注意力机制。首先利用小波变换去噪(WT)对盾构掘进过程中收集数据的噪声进行去除,通过TCN算法对输入的时间序列进行局部特征的提取,再采用GRU算法提取时间序列数据的长期依赖性特征,最后引入注意力机制,进一步增强模型对输入数据中重要信息的关注程度。以福州滨海快线第三标段为例,对本混合模型进行了验证,并与其他三种效果较好的深度学习模型进行比较。结果表明,该模型对盾构运动轨迹的预测精度高于其他模型,该预测框架为盾构掘进过程中盾构移动轨迹的实时预测提供了一种有前景的解决方案。
Real Time Prediction of Shield Tunneling Trajectory Based on Hybrid Deep Learning Algorithm
Shield tunnelling trajectory deviation will cause segment dislocation ground subsidence and other hazards.A deep learning model for real-time prediction of trajectory deviation during shield tunneling is proposed.The model combines a Temporal Convolutional Network (TCN) and Gated Gate Unit (GRU) and introduces an attention mechanism.First,wavelet transform denoising (WT) is used to remove the noise of the data collected during the shield excavation process,the local features of the input time series are extracted by the TCN algorithm,and then the GRU algorithm is used to extract the long-term dependence features of the time series data,Finally,the attention mechanism is introduced to further enhance the model's attention to important information in the input data.Taking the third section of the Fuzhou Binhai Express Line as an example,the hybrid model was verified and compared with other three deep learning models with better effects.The results show that the prediction accuracy of the model for the movement trajectory of the shield is higher than that of other models,and this prediction framework provides a promising solution for the real-time prediction of the movement trajectory of the shield during the excavation of the shield.

shield tunneling trajectory deviationdeep learningtemporal convolutional networkcontrol unitautomatic control

王宇超、谢雄耀、黄昌富、肖中林

展开 >

同济大学土木工程学院,上海 200092

同济大学岩土与地下工程教育部重点实验室,上海 200092

中铁十五局集团有限公司,上海 200040

中交海峡建设投资发展有限公司,福州 350015

展开 >

盾构轨迹偏差 深度学习 时域卷积网络 控制门单元 自动控制

国家自然科学基金国家自然科学基金

5203800851978431

2024

地下空间与工程学报
中国岩石力学与工程学会,重庆大学

地下空间与工程学报

CSTPCD北大核心
影响因子:0.886
ISSN:1673-0836
年,卷(期):2024.20(z1)