首页|基于深度学习的多层级恰可察觉失真预测

基于深度学习的多层级恰可察觉失真预测

扫码查看
视觉恰可察觉失真(just noticeable distortion,JND)直接反映人眼视觉系统对视觉信号噪声的敏感程度,广泛应用于图像和视频处理领域.针对视频 JND 阈值的多层级预测问题,将其转化为用户满意率(satisfied user ratio,SUR)曲线的预测问题,并提出一种基于特征融合的SUR曲线预测模型.该模型主要分为关键帧选择模块、特征提取和融合模块以及SUR分数回归模块.在关键帧选择模块,根据视觉感知机制,提出空时域感知复杂度并以此作为视频关键帧判决指标.在特征提取和融合模块,基于密集残差块(dense residual block,RDB)提出多尺度密集残差网络实现图像特征提取和多尺度融合.实验结果表明,所提出的SUR曲线预测模型在JND阈值预测精度方面整体优于现有模型,且在运行效率上平均降低 8.1%的时间成本.同时,该模型还可以用于预测其他层级JND阈值,可直接应用于视频多层级感知编码优化.
Deep learning-based prediction of multi-level just noticeable distortion
Visual just noticeable distortion(JND)directly reflects the sensitivity of the human visual system to visual signal noise,and is widely used in image and video processing.Aiming at the multilevel prediction problem of video JND threshold,it was transformed into the prediction problem of satisfied user ratio(SUR)curve,and a feature fu-sion-based SUR curve prediction model was proposed.The model was mainly divided into key frame extraction module,feature extraction and fusion module,and SUR score regression module.In the key frame extraction module,according to the visual perception mechanism,the spatial-temporal domain perception complexity was proposed and used as the video key frame judgment index.In the feature extraction and fusion module,a multi-scale dense residual network was proposed based on dense residual block(RDB)to realize image feature extraction and multi-scale fusion.The experimental results show that the proposed SUR curve prediction model is overall better than the existing mod-els in terms of JND prediction accuracy and reduces the time cost by 8.1% on average in terms of operational effi-ciency.Meanwhile,the model can also be used to predict other layers of JND thresholds,which can be directly ap-plied to video multilevel perceptual coding optimization.

just noticeable distortiondeep learningquality evaluation

徐海峰、王鸿奎、殷海兵、陈楚翘

展开 >

杭州电子科技大学通信工程学院,浙江 杭州 310018

杭州电子科技大学网安学院,浙江 杭州 310018

恰可察觉失真 深度学习 质量评价

国家自然科学基金资助项目国家自然科学基金资助项目国家自然科学基金资助项目科技部重点研发课题资助项目浙江省"尖兵""领雁"研发攻关计划项目浙江省"尖兵""领雁"研发攻关计划项目浙江省自然科学基金资助项目浙江省自然科学基金资助项目

6220213462031009619721232023YFB45028002023C011492022C01068LDT23F01014F01LDT23F01011F01

2024

电信科学
中国通信学会 人民邮电出版社

电信科学

CSTPCD北大核心
影响因子:0.902
ISSN:1000-0801
年,卷(期):2024.40(1)
  • 2