首页|基于流量特征重构与映射的物联网DDoS攻击单流检测方法

基于流量特征重构与映射的物联网DDoS攻击单流检测方法

A single flow detection enabled method for DDoS attacks in IoT based on traffic feature reconstruction and mapping

扫码查看
针对现有检测方法对物联网(IoT)分布式拒绝服务(DDoS)攻击响应速度慢、特征差异性低、检测性能差等不足,提出了一种基于流量特征重构与映射的单流检测方法(SFDTFRM).首先,为扩充特征,使用队列按照先入先出存储定长时间跨度内接收的流量,得到队列特征矩阵.其次,针对物联网设备正常通信流量与 DDoS 攻击流量存在相似性的问题,提出一种与基线模型相比更加轻量化的多维重构神经网络模型与一种函数映射方法,改进模型损失函数按照相应索引重构队列定量特征矩阵,并通过函数映射方法转化为映射特征矩阵,增强包括物联网设备正常通信流量与 DDoS 攻击流量在内的不同类型流量之间的差异和同类型流量的相似性.最后,使用文本卷积网络、信息熵计算分别提取映射特征矩阵和队列定性特征矩阵的频率信息,得到拼接向量,丰富单条流量的特征信息并使用机器学习分类器进行 DDoS 攻击流量检测.在两个基准数据集上的实验结果表明,SFDTFRM 能够有效检测不同类型的 DDoS 攻击,检测性能指标平均值与现有方法相比最多提升12.01%.
To address the slow response time of existing detection modules to Internet of things(IoT)distributed de-nial of service(DDoS)attacks,their low feature differentiation,and poor detection performance,a single flow detec-tion enabled method based on traffic feature reconstruction and mapping(SFDTFRM)was proposed.Firstly,SFDTFRM employed a queue to store previously arrived flow based on the first in,first out rule.Secondly,to address the issue of similarity between normal communication traffic of IoT devices and DDoS attack traffic,a multidimen-sional reconstruction neural network model more lightweight compared to the baseline model and a function mapping method were proposed.The modified model loss function was utilized to reconstruct the quantitative feature matrix of the queue according to the corresponding index,and transformed into a mapping feature matrix through the func-tion mapping method,enhancing the differences between different types of traffic,including normal communication traffic of IoT devices and DDoS attack traffic.Finally,the frequency information was extracted using a text convolu-tional network and information entropy calculation and the machine learning classifier was employed for DDoS at-tack traffic detection.The experimental results on two benchmark datasets show that SFDTFRM can effectively de-tect different DDoS attacks,and the average metrics value of SFDTFRM is a maximum of 12.01%higher than other existing methods.

DDoS attacks detectionmultidimensional reconstructionfunction mappingmachine learning

谢丽霞、袁冰迪、杨宏宇、胡泽、成翔、张良

展开 >

中国民航大学计算机科学与技术学院,天津 300300

中国民航大学安全科学与工程学院,天津 300300

扬州大学信息工程学院,江苏 扬州 225127

亚利桑那大学信息学院,美国亚利桑那 图森 AZ 85721

展开 >

DDoS攻击检测 多维重构 函数映射 机器学习

国家自然科学基金资助项目国家自然科学基金资助项目中央高校基本科研业务费项目江苏省基础研究计划自然科学基金青年基金项目

62201576U18331073122022050BK20230558

2024

电信科学
中国通信学会 人民邮电出版社

电信科学

CSTPCD北大核心
影响因子:0.902
ISSN:1000-0801
年,卷(期):2024.40(1)
  • 1
  • 1