首页|基于自编码器的PCA-SOM公共服务资源配置评价与选址优化决策方法

基于自编码器的PCA-SOM公共服务资源配置评价与选址优化决策方法

扫码查看
当前城市规划和公共服务资源配置存在分配不均和选址效率低下的问题.将公共服务资源的电力消耗数据与其资源数量、区域人口数量相结合,基于主成分分析(principal component analysis,PCA)评估各区域公共服务资源的配置状况,并以兰州市为案例,运用自组织映射(self-organizing mapping,SOM)算法进行教育资源的优化选址.研究发现,电力数据能有效指示资源配置的不足,并为优化分配提供精确的指导.尤其在兰州市,SOM算法的应用不仅提高了教育资源选址的效率,还促进了资源的公平分配.不仅为甘肃省提供了公共服务资源配置的科学决策依据,也为其他地区在相似领域的研究提供了参考.
Public service resource allocation evaluation and site selection optimization decision making method using PCA-SOM based on autoencoder
The distribution of urban planning and allocation of public service resources currently lacks consistency and suffers from inefficient siting.Electricity consumption data for public service resources was combined with resource quantity and regional population size to evaluate the allocation of public service resources in each region using principal component analysis(PCA).Additionally,the self-organizing mapping(SOM)algorithm was utilized to optimize the siting of educational resources in Lanzhou City as a case.The power data demonstrated the inadequacy of resource allocation and offered accurate guidance for optimal allocation,especially in Lanzhou City.By utilizing the SOM algorithm,the effi-ciency of educational resource siting was enhanced,and resource allocation was fairly promoted.This study offers a well-researched justification for public service resource allocation in Gansu Province,and serves as a significant reference point for similar research in other regions.

allocation of public service resourcepower dataprincipal component analysisself-organizing mappingsite selection optimization

魏军、王华、郭芳琳、张文波、杨蓉

展开 >

国网甘肃省电力公司,甘肃 兰州 730050

公共服务资源配置 电力数据 主成分分析 自组织映射 选址优化

2024

电信科学
中国通信学会 人民邮电出版社

电信科学

CSTPCD北大核心
影响因子:0.902
ISSN:1000-0801
年,卷(期):2024.40(2)
  • 19