首页|基于元路径卷积的异构图神经网络算法

基于元路径卷积的异构图神经网络算法

扫码查看
现有异构图嵌入方法在多层图卷积计算中,通常将每个节点表示为单个向量,使得高阶图卷积层无法区分不同关系和顺序的信息,导致信息在传递过程中丢失.为解决该问题,提出了基于元路径卷积的异构图神经网络算法.该方法首先利用特征转换自适应调整节点特征;其次,设计了元路径内卷积挖掘节点高阶间接关系,捕获目标节点在单元路径下与其他类型节点之间的交互关系;最后,通过自注意力机制探索语义之间的相互性,融合来自不同元路径的特征.在ACM、IMDB和DBLP数据集上进行广泛实验,并与当前主流算法进行对比分析.实验结果显示,节点分类任务中Macro-F1平均提高0.5%~3.5%,节点聚类任务中ARI值提高了1%~3%,证明该算法是有效、可行的.
Meta-path convolution based heterogeneous graph neural network algorithm
In the multilayer graph convolution calculation,each node is usually represented as a single vector,which makes the high-order graph convolution layer unable to distinguish the information of different relationships and se-quences,resulting in the loss of information in the transmission process.To solve this problem,a heterogeneous graph neural network algorithm based on meta-path convolution was proposed.Firstly,the feature transformation was used to adaptively adjust the node features.Secondly,the high-order indirect relationship between the nodes was mined by convolution within the meta-path to capture the interaction between the target node and other types of nodes under the element path.Finally,the reciprocity between semantics was explored through the self-attention mechanism,and the features from different meta-paths were fused.Extensive experiments were carried out on ACM,IMDB and DBLP da-tasets,and compared with the current mainstream algorithms.The experimental results show that the average increase of Macro-F1 in the node classification task is 0.5%~3.5%,and the ARI value in the node clustering task is increased by 1%~3%,which proves that the algorithm is effective and feasible.

heterogeneous graphgraph embeddinggraph neural networkmeta-pathgraph convolution

秦志龙、邓琨、刘星妍

展开 >

嘉兴大学信息科学与工程学院,浙江 嘉兴 314001

浙江理工大学计算机科学与技术学院(人工智能学院),浙江 杭州 310018

嘉兴大学浙江省全省多模态感知与智能系统重点实验室,浙江 嘉兴 314001

异构图 图嵌入 图神经网络 元路径 图卷积

教育部人文社会科学研究专项任务项目教育部产学合作协同育人项目教育部产学合作协同育人项目

22JDSZ3023220603372015422220604029012441

2024

电信科学
中国通信学会 人民邮电出版社

电信科学

CSTPCD北大核心
影响因子:0.902
ISSN:1000-0801
年,卷(期):2024.40(3)
  • 29