首页|云边端协同下多用户细粒度任务卸载调度策略

云边端协同下多用户细粒度任务卸载调度策略

扫码查看
为了解决当前处理多用户应用程序效率低下、密集网络资源利用率低及系统花费成本高等问题,提出了一种云边端协同下多用户细粒度任务卸载调度方法.该方法联合考虑了时延、能耗和服务器租用成本,先划分应用程序任务并设计子任务优先级,然后提出了多用户子任务调度方案,设计了一种改进的模拟退火粒子群算法求解最小系统总成本,从而实现最佳卸载决策.实验结果表明,所提方法相较于粒子群和模拟退火二元粒子群等其他方法,分别降低了至少12.28%和7.42%的总成本.
Multi-user fine-grained task offloading scheduling strategy under cloud-edge-end collaboration
To solve the current problems of inefficiency,low utilization of intensive network resources,and high sys-tem cost in handling multi-user applications,a multi-user fine-grained task offloading scheduling approach under cloud-edge-end collaboration was proposed. Latency,energy consumption,and server rental costs were jointly consid-ered. Application tasks were firstly divided and subtask priorities were designed. Then,a multi-user subtask schedul-ing scheme was proposed and an improved simulated annealing particle swarm algorithm was designed to minimize the total system cost to achieve the optimal offloading decision. Experimental results show that the proposed method reduces the total cost by at least 12.28% and 7.42% compared to other methods such as particle swarm and simulated annealing binary particle swarm,respectively.

edge computingtask offloadingcloud-edge-end collaborationmulti-userfine-grained scheduling

谢满德、黄竹芳、孙浩

展开 >

浙江工商大学信息与电子工程学院,浙江杭州 310018

边缘计算 任务卸载 云边端协同 多用户 细粒度调度

国家自然科学基金浙江省重点研发计划浙江省重点研发计划浙江省教育厅科研项目

619723522024C010252023C01220Y202353408

2024

电信科学
中国通信学会 人民邮电出版社

电信科学

CSTPCD北大核心
影响因子:0.902
ISSN:1000-0801
年,卷(期):2024.40(4)