首页|6G网络任务卸载与细粒度切片资源调度联合优化算法

6G网络任务卸载与细粒度切片资源调度联合优化算法

扫码查看
针对未来全域、全场景多样化的业务需求,6G网络需要提供场景化、个性化的服务能力.针对未来细粒度业务服务质量保障问题,提出了6G网络任务卸载与细粒度切片资源调度联合优化算法,联合考虑多MEC的计算卸载和网络切片的资源调度,在有限的资源内,最小化任务的执行时延和能耗成本,并采用异步训练的A3C强化学习算法进行求解.仿真结果表明,对比传统算法,该算法可以在满足用户业务需求的情况下降低计算成本,并且算法收敛速度快,可以实现快速决策.
Joint optimization algorithm for 6G network task offloading and fine-grained slice resource scheduling
In response to the diverse business needs of the future in all domains and scenarios,6G networks need to provide scenario-based and personalized service capabilities.Aiming at the problem of quality assurance of fine-grained business services in the future,a joint optimization algorithm for 6G network task offloading and fine-grained slice resource scheduling was proposed,which jointly considered the calculation offloading of multiple MECs and the resource scheduling of network slices,and minimized the execution delay and energy consumption cost of the task within limited resources.Then the A3C reinforcement learning algorithm of asynchronous training was used to solve it.The simulation results show that,compared with the traditional algorithm,the proposed algorithm can reduce the computing cost while meeting the business needs of users.Additionally,the algorithm converges fast and can realize fast decision-making.

6G networktask offloadingfine-grained slicingmulti-dimensional resourcejoint optimization

王晔、王逸飞、陈康、朱晓荣、童恩、徐语菲

展开 >

江苏移动信息系统集成有限公司,江苏 南京 210013

南京邮电大学通信与信息工程学院,江苏 南京 210003

中国移动通信集团江苏有限公司,江苏 南京 210013

6G网络 任务卸载 细粒度切片 多维资源 联合优化

国家自然科学基金国家自然科学基金江苏省高等学校"青蓝工程"项目江苏省重点研发计划江苏省研究生科研与实践创新计划

6187123792067101BE2021013-3KYCX21_0733

2024

电信科学
中国通信学会 人民邮电出版社

电信科学

CSTPCD北大核心
影响因子:0.902
ISSN:1000-0801
年,卷(期):2024.40(5)