首页|基于机器学习技术的返乡发展人群预测模型研究与应用

基于机器学习技术的返乡发展人群预测模型研究与应用

扫码查看
随着经济的发展和一线城市生活压力的增大,越来越多的人迁移城市以及返回家乡发展,为了高效服务用户和提升用户产品使用体验,提出基于LightGBM、CatBoost等算法来预测返乡发展人群,并进行了异构模型融合.通过模型对比,所提融合模型有更好的效果,可以为服务和产品提供依据,减少流失优化感知,提高市场保有率.
Research and application of prediction model for returning home development population based on machine learning technology
With the development of the Chinese economy and the increasing pressure of living in first-tier cities,more and more young people choose to return to their hometowns for development.To efficiently serve users and improve their product usage experience,the use of algorithms such as LightGBM and CatBoost was proposed to predict the re-turning population,thereby providing a basis for services and products,and improving user market retention rates.

LightGBMfeature engineeringKNNK-fold cross-validation

杜昭、谢国城、陈静旋、张伟斌

展开 >

中国电信股份有限公司广东分公司,广东 广州 510062

广东亿迅科技有限公司,广东 广州 510627

LightGBM 特征工程 KNN K折交叉验证

2024

电信科学
中国通信学会 人民邮电出版社

电信科学

CSTPCD北大核心
影响因子:0.902
ISSN:1000-0801
年,卷(期):2024.40(5)