首页|网络服务异常事件告警因果图构造方法

网络服务异常事件告警因果图构造方法

扫码查看
网络服务系统中,异常事件的发生经常导致系统中产生大量告警事件,形成告警风暴.运维人员需要花费大量的时间和精力从这些告警数据中寻找关键信息、确定异常事件的根源.为了减少运维人员所需处理的告警数量,智能化、自动化地提取告警风暴中的根源告警,基于网络服务告警的传播模式分析,提出了一种告警因果图构造方法,并将其应用于提取异常事件发生时的告警风暴关键信息.实验使用运营商现网管理系统的真实数据集,通过告警风暴摘要提取实验,验证了告警因果图生成的效果,并进行了相关案例的物理意义分析.结果表明,使用告警因果图生成的方式进行告警风暴摘要提取,达到了96%的召回率,保留了绝大部分关键信息.同时,使用该方法对系统产生的告警进行压缩,对较难压缩的告警码的压缩率能够达到66.5%.
A method of building alarm causality graph for anomaly events in network services
In network service systems,the occurrence of anomaly events often leads to a large number of alarm events in the system,forming alarm storms.Operators need to spend a lot of time and effort searching for key information and identifying the root cause of anomaly events from these alarm data.In order to reduce the number of alarms that operators needed to handle,as well as automatically extracted the root alarms in the alarm storm,a method for gener-ating an alarm causality graph based on the analysis of the propagation mode of network service alarms was pro-posed,and applied to extract key information of the alarm storm when anomaly events occurred.Real datasets of an operator's online network management system were used in experiments to verify the effect of building the alarm causal graph in extracting the alarm storm abstract.A real-world case was used to analyze the physical significance of this method.The results show that the recall rate of extracting alarm storm summary can reach 96%and the vast ma-jority of key information is retained by using the method of alarm causality graph generation.In addition,the com-pression rate of alarms using this method can reach 66.5%for alarm codes that are difficult to compress.

alarm compressionanomaly eventalarm storm summarycausality graphartificial intelligence for IT operations

张蕾、靖宇涵、何波、戚琦、陈晨、王敬宇

展开 >

中国联合网络通信集团有限公司,北京 100033

北京邮电大学网络与交换技术全国重点实验室,北京 100876

新讯数字科技有限公司,北京 100091

告警压缩 异常事件 告警风暴摘要 因果图 智能运维

国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金

62171057621010646207106762001054

2024

电信科学
中国通信学会 人民邮电出版社

电信科学

CSTPCD北大核心
影响因子:0.902
ISSN:1000-0801
年,卷(期):2024.40(5)