首页|基于多任务学习的行人重识别算法研究

基于多任务学习的行人重识别算法研究

扫码查看
行人重识别(person re-identification,re-ID)在多摄像机之间进行跨镜检索以匹配目标行人图像,可以在人脸、指纹等生物特征失效的情况下实现行人关联,已成为智能视频监控系统的关键技术,对智能安防、智慧城市等领域的产业落地进行了有效赋能.传统的行人重识别算法通常采用表征学习或度量学习方法.基于多任务学习的机器学习模式,结合表征学习与度量学习方法,综合利用特征表示和距离度量两方面的优势,采用分类损失和三元组损失共同训练模型,使模型在特征提取和相似性度量上都得到充分的训练.实验结果表明,该方法在行人重识别任务中取得了更好的性能,验证了鲁棒性和在泛化能力方面的优越性.
Research on person re-identification algorithm based on multi-task learning
Person re-identification(re-ID)involves the cross-camera retrieval and matching of target pedestrian im-ages,facilitating pedestrian association in scenarios where biometric features such as faces and fingerprints may prove ineffective.It has become a pivotal technology in intelligent video surveillance systems,playing a crucial role in domains like smart security and smart cities.Traditional re-ID algorithms typically employ either representation learning or metric learning methods.A novel approach was proposed which combined representation learning and metric learning methods based on the multi-task learning machine learning paradigm.By capitalizing on the advan-tages of both feature representation and distance metric,and concurrently training the model using classification loss and triplet loss,comprehensive training for both feature extraction and similarity measurement was ensured.Experi-mental results validate the effectiveness of the proposed approach,demonstrating superior performance in re-ID tasks and underscoring the robustness and superior generalization capability.

person re-identificationintelligent video surveillancerepresentation learningmetric learningmulti-task learning

秘蓉新、姚文文、吴兵灏

展开 >

国家计算机网络应急技术处理协调中心,北京 100029

北京邮电大学计算机学院,北京 100876

行人重识别 智能视频监控 表征学习 度量学习 多任务学习

2024

电信科学
中国通信学会 人民邮电出版社

电信科学

CSTPCD北大核心
影响因子:0.902
ISSN:1000-0801
年,卷(期):2024.40(6)
  • 1