首页|基于移动边缘计算的多流自适应卸载方案

基于移动边缘计算的多流自适应卸载方案

扫码查看
海量视频流的传输和分析需要大量的带宽和计算资源,这对当前基于移动边缘计算(mobile edge computing,MEC)的卸载方案提出了严峻挑战.对此,提出了一种基于多流协同优化框架的自适应卸载方案.首先,在满足长期MEC能量预算的约束条件下,通过联合优化数据流选择决策、服务器卸载决策、带宽资源分配和计算资源分配来最小化视频任务的处理成本.然后,基于李雅普诺夫优化方法,将长期优化问题转化为每个时隙独立的确定性子问题,并利用马尔可夫近似和KKT条件求解每个时隙的混合整数非线性规划问题.仿真结果表明,所提方案在满足长期MEC能量约束的同时,其成本性能显著优于已有基准研究方案.
Multi-stream adaptive offloading scheme based on mobile edge computing
The transmission and analysis of massive video streams require significant edge bandwidth and computa-tional resources,posing severe challenges to the current multimedia frameworks based on mobile edge computing(MEC).To address this issue,an adaptive offloading scheme based on a multi-stream collaborative optimization framework was proposed.Firstly,under the constraint of the long-term MEC energy budget,the processing cost of video tasks was minimized by optimizing the data stream selection decisions,server offloading decisions,bandwidth resource allocation,and computing resource allocation.Then,based on the Lyapunov optimization method,the long-term optimization problem was transformed into independent deterministic subproblems for each time slot,and the mixed-integer nonlinear programming problems for each time slot were solved by Markov approximation and KKT conditions.Simulation results indicate that the proposed scheme not only meets the long-term MEC energy constraint,but also significantly outperforms existing benchmark schemes in terms of cost performance.

mobile edge computingmulti-stream adaptive offloadingvideo processingLyapunov optimization

胡叠丽、杨哲铭、纪雯

展开 >

中国科学院计算技术研究所,北京 100190

鹏城实验室,广东 深圳 518055

中国科学院大学计算机科学与技术学院,北京 101408

移动边缘计算 多流自适应卸载 视频处理 李雅普诺夫优化

2024

电信科学
中国通信学会 人民邮电出版社

电信科学

CSTPCD北大核心
影响因子:0.902
ISSN:1000-0801
年,卷(期):2024.40(11)