首页|基于子空间方法的任务依赖脑电实时压缩算法研究

基于子空间方法的任务依赖脑电实时压缩算法研究

扫码查看
现有研究提出的脑电信号的数据压缩算法虽然已经可以做到不错的压缩率,但是缺少对任务态数据的关注,同时在实时性上也难以满足脑机接口(Brain-Computer Interface,BCI)应用的要求,且会大幅度降低BCI系统的性能.基于子空间方法,在已知BCI系统任务态信息时,在压缩过程中尽可能保留任务相关脑电信号,可以在不影响BCI系统性能的同时大幅度减少需要传输的数据量.通过使用有限冲击响应滤波器组逼近任务相关成分的信号子空间,可以将脑电信号分割成压缩率允许的最小块,实时处理小块脑电信号.在与原数据在部分分类算法性能上无显著性差异的前提下,可提出一种仅传输8%数据量的算法,该算法不仅可以在传输较少数据量的同时较小地影响BCI系统的性能,且可做到实时压缩,具有重要的应用价值.
Research on task-dependent EEG real-time compression algorithm based on the subspace method
Although existing EEG compression algorithms can achieve good compression rates,they lack attention to task-related data and are also unable to meet the real-time requirements of brain-computer interface(BCI)applications,which will significantly reduce the performance of BCI systems.Based on the subspace method,when the task-related information of the BCI system is known,the task related EEG signals can be preserved as much as possible during the compression process,which can significantly reduce the amount of data that needs to be transmitted without affecting the performance of the BCI system.By using a finite impulse response filter bank to approximate the signal subspace of task related components,the EEG signal can be segmented into the smallest possible compression ratio and processed in real-time.On the premise that there is no significant difference in the performance of some classification algorithms compared to the original data,an algorithm that only transmits 8%of the data can be proposed.This algorithm can not only transmit less data while minimizing the impact on the performance of the BCI system,but also achieve real-time compression,whitch has important application value.

brain-computer interfaceelectroencephalography(EEG)signal compressiontask dependence

王战阳、张洪欣、杨晨

展开 >

北京邮电大学电子工程学院,北京 100876

脑机接口 脑电 信号压缩 任务依赖

2024

信息通信技术与政策
信息产业部电信传输研究所

信息通信技术与政策

影响因子:0.363
ISSN:2096-5931
年,卷(期):2024.50(5)