首页|基于蛇算法优化的改进RBF神经网络的航天电磁继电器贮存寿命预测方法

基于蛇算法优化的改进RBF神经网络的航天电磁继电器贮存寿命预测方法

扫码查看
针对航天电磁继电器的接触电阻预测和预测精度问题,提出了一种基于蛇优化(SO)算法改进BRF神经网络的模型.在传统径向基函数(RBF)模型基础上,通过SO算法对其权值参数进行优化,从而更好地预测继电器接触电阻值.基于S0-RBF模型与RBF模型、GA-RBF模型分别预测接触电阻,对比分析预测结果,表明所提模型具有较高的预测精度.
Storage Life Prediction Method of Aerospace Electromagnetic Relay with Improved RBF Neural Network Based on Snake Algorithm Optimization
Aiming at the prediction and prediction accuracy of contact resistance of aerospace electromagnetic relays,a radial basis function(BRF)neural network model based on snake optimization(SO)algorithm is proposed.On the basis of the traditional RBF model,the SO algorithm is used to optimize the weight parameters so as to better predict the contact resistance value of the relay.The constructed SO-RBF prediction model is compared with RBF model.The models are used to predict the change trend of contact resistance.The comparison and analysis of the prediction results show that the proposed model has high prediction accuracy.

radial basis function(RBF)neural networkdegradation teststoragerelay

李久鑫、王召斌、朱佳淼

展开 >

江苏科技大学 自动化学院,江苏镇江 212003

RBF神经网络 退化试验 贮存 继电器

国家自然科学基金江苏省研究生科研与实践创新计划

51507074KYCX23_3875

2024

电器与能效管理技术
上海电器科学研究所(集团)有限公司

电器与能效管理技术

影响因子:0.394
ISSN:2095-8188
年,卷(期):2024.(3)
  • 18