首页|基于RDBN深度学习算法的窃电监测系统设计

基于RDBN深度学习算法的窃电监测系统设计

扫码查看
窃电行为不仅会造成电网非技术性损耗增加,而且可能因操作不当影响电网设备的运行安全和窃电者的人身安全.针对当前电网在窃电检测方面存在的稽查难度大、检测效率低等问题,设计了窃电监测系统.配套监测装置可灵活安装在供电线路上,使用电流互感器取能,实时采集线路电流,利用4G模块将数据传输至云服务器,在上位机软件中采用实值深度置信网络(RDBN)算法对数据进行分析.仿真和实验测试表明,RDBN算法对窃电状态的识别准确率达到98.15%,监测系统能实时获取并分析监测数据,标记可疑窃电线路,降低稽查难度,提高检测效率.
Design of Electricity Theft Monitoring System Based on RDBN Deep Learning Algorithm
Electricity theft not only leads to an increase in non-technical losses in the power grid,but also has the potential to impact the operational safety of power grid equipment and pose risks to the safety of individuals involved in power theft due to improper handling.The current power grid faces challenges in detecting electricity theft,including difficulty in inspections and low detection efficiency.In response to these issues,a power theft monitoring system is proposed.The associated monitoring device can be flexibly installed on power supply lines,utilizing a current transformer for power supply.It real-time collects current from the power line and transmits the data to a cloud server using a 4G module.The upper-level software employs the real-valued deep belief network(RDBN)algorithm for data analysis.Through simulation and experimental testing,the RDBN algorithm achieves a recognition accuracy of 98.15%for power theft states.The monitoring system can acquire and analyze monitoring data in real-time,mark suspicious power theft lines,reduce inspection difficulty,and improve detection efficiency.

non-technical lossesdetecting electricity theftcurrent transformer for power supplyreal-valued deep belief network(RDBN)

陈志谦、鲍光海、方艳东

展开 >

福州大学电气工程与自动化学院,福建福州 350108

浙江天正电气股份有限公司,浙江乐清 528300

非技术性损耗 窃电检测 电流互感器取能 实值深度置信网络

福建省科技计划

2023H0007

2024

电器与能效管理技术
上海电器科学研究所(集团)有限公司

电器与能效管理技术

影响因子:0.394
ISSN:2095-8188
年,卷(期):2024.(5)
  • 20