首页|基于ISW和优化VMD-LSTM的锂电池剩余寿命预测

基于ISW和优化VMD-LSTM的锂电池剩余寿命预测

扫码查看
针对锂电池容量衰退过程中容量再生和曲线持续波动导致的剩余使用寿命(RUL)难以精确预测的问题,提出基于变分模态分解(VMD)和改进滑动窗口(ISW)的长短期记忆(LSTM)神经网络预测模型.首先,使用VMD对容量数据进行分解,区分主退化和容量再生趋势;其次,利用ISW动态捕捉曲线波动,提高预测精度;最后,使用LSTM建模,LSTM和VMD的参数均使用贝叶斯优化(BO)寻优.采用NASA数据集实验验证,并在CALCE数据集上进一步验证,同时与SW-LSTM和ISW-LSTM模型进行对比.结果表明,所提方法具有更小的预测误差和更高的稳定性,能有效消除容量再生和曲线波动带来的影响,且具有泛化性能和实时处理能力.
Remaining Useful Life Prediction of Lithium Batteries Based on ISW and Optimized VMD-LSTM
Aiming at the problem that the remaining useful life(RUL)of lithium battery is difficult to predict accurately due to the capacity regeneration and the continuous curve fluctuation during capacity decline,a long short-term memory(LSTM)neural network prediction model based on variational mode decomposition(VMD)and improved sliding window(ISW)is proposed.Firstly,VMD is used to decompose the capacity data and distinguish the trend of main degradation and the capacity regeneration.Then,ISW is used to capture the curve fluctuation dynamically to improve the prediction accuracy.Finally,LSTM is used to model.The parameters of LSTM and VMD are optimized using Bayesian optimization(BO).The experiment uses NASA data set and is further verified on CALCE data set.Compared with SW-LSTM and ISW-LSTM models,the results show that the proposed method has smaller prediction error and higher stability,which can effectively eliminate the influence of capacity regeneration and curve fluctuation,and has generalization performance and real-time processing capability.

lithium batteryremaining useful lifevariational mode decomposition(VMD)improved sliding windowlong short-term memory(LSTM)neural networkBayesian optimization

张周同、盛文娟

展开 >

上海电力大学,上海 200090

锂电池 剩余使用寿命 变分模态分解 改进滑动窗口 长短期记忆神经网络 贝叶斯优化

2024

电器与能效管理技术
上海电器科学研究所(集团)有限公司

电器与能效管理技术

影响因子:0.394
ISSN:2095-8188
年,卷(期):2024.(11)