首页|基于Ⅴ-Ⅰ轨迹的非侵入式电动自行车充电行为在线辨识

基于Ⅴ-Ⅰ轨迹的非侵入式电动自行车充电行为在线辨识

扫码查看
为杜绝安全隐患,利用Ⅴ-Ⅰ轨迹和改进MobileNetv2模型对入户充电行为进行在线辨识.设计实验场景,从采样率选取、迁移学习、泛化性和不同网络对比4个方面验证模型性能,最后把模型部署到上位机和K210芯片上.上位机系统在电动自行车单独充电时准确识别,当充电行为和常用家庭负载混合运行时,识别准确率达到98%以上.
Online Identification of Non-Invasive Electric Bicycle Charging Behavior Based on Ⅴ-Ⅰ Trajectory
To prevent the safety hazards,the Ⅴ-Ⅰ trajectory features and improved MobileNetv2 model are used for the online identification of the household charging behavior.The experimental scenarios are designed to validate the model performance from four aspects:sampling rate selection,transfer learning,generalization,and comparison of different networks.Finally,the model is deployed to the computer and the K210 chip.The online recognition system based on the upper computer can accurately identify electric bicycles when charging separatly,and the recognition accuracy is over 98%when charging behavior is mixed with commonly used household loads.

Ⅴ-Ⅰ trajectoryimproved MobileNetv2 modeltransfer learningonline recognition

段佳其、鲍光海、方艳东

展开 >

福州大学电气工程与自动化学院,福建 福州 350108

浙江天正电气股份有限公司,浙江乐清 325600

Ⅴ-Ⅰ轨迹 改进MobileNetv2模型 迁移学习 在线识别

2024

电器与能效管理技术
上海电器科学研究所(集团)有限公司

电器与能效管理技术

影响因子:0.394
ISSN:2095-8188
年,卷(期):2024.(12)