首页|安徽省碳排放时空格局演变与碳达峰路径预测——基于STIRPAT扩展模型和岭回归模型

安徽省碳排放时空格局演变与碳达峰路径预测——基于STIRPAT扩展模型和岭回归模型

扫码查看
基于双碳目标和空间耦合视角,对NPP/VIIRS夜间灯光数据进行修正并拟合碳排放模型,补充在2018-2021年中国碳核算数据库县级碳排放数据,通过空间自相关模型分析安徽省县级单元碳排放的时空变化特征.根据"因素筛选—模型构建—耦合计算—交互影响"的思路,基于拓展后的STIRPAT模型和岭回归模型,对不同发展模式下的碳排放进行预测演算,利用地理探测器揭示空间碳排放驱动因素的交互作用,为实现碳达峰提供路径依据.结果表明:(1)1997-2021年安徽省碳排放呈现波动上升再趋于平稳的趋势,在2013年后进入碳达峰前的平台期,自北向南呈由高到低分布,以主要工业城市为主形成了不同规模的高密度碳排放中心;(2)预测得到的碳排放达峰时间区间为2030-2045年,峰值范围为4.472亿t~5.558亿t;(3)基准情景下,安徽将在2040年碳达峰,绿色发展情景最早达峰且峰值最低,是对比后确定的最优碳达峰路径;(4)人口和能源结构的驱动力最强,城镇化水平和人均GDP与各种驱动因素的交互作用增强效果显著.
Spatio-temporal Evolution of Carbon Emissions and Prediction of Carbon Peak Path in Anhui Province:Based on Extended STIRPAT Model and Ridge Regression Model
Based on the dual carbon targets and spatial coupling perspective,this study employs a correction method for NPP/VIIRS night light data and develops a carbon emission model to fill in the gaps of county-level carbon emission data from 2018 to 2021 provided by CEADs.The spatiotemporal characteristics of county-level carbon emis-sions in Anhui Province are analyzed using a spatial autocorrelation model.Following the concept of"factor selection-model construction-coupling calculation-interactive influence,"this paper predicts carbon emissions under different development modes using an extended STIRPAT model and ridge regression model.Additionally,geographic detector analysis is employed to reveal the interaction among spatial driving factors of carbon emissions,providing insights for achieving peak carbon emissions reduction.The findings indicate that:(1)Carbon emissions in Anhui Province ex-hibit fluctuating trends followed by stabilization,entering a plateau period before reaching their peak after 2013.Geo-graphically,there is a decreasing trend from north to south with high-density carbon emission centers formed by major industrial cities at varying scales.(2)The projected time interval for reaching peak carbon emissions is estimated as 2030-2045,with an expected range between 447.2 million t and 555.8 million t.(3)Under the baseline scenario,Anhui's peak will occur in 2040;however,the green development scenario demonstrates an earlier and lower peak level compared to other scenarios based on comparative analysis as determined through optimization techniques.(4)Population dynamics and energy structure are identified as primary driving forces with significant enhancement effects observed through interactions between urbanization level,per capita GDP,and various driving factors.

carbon emissionsNPP/VIIRSextended STIRPAT modeldriving factorsAnhui Province

陆妍霏、宣蔚、赵力伟

展开 >

合肥工业大学建筑与艺术学院,合肥 230009

碳排放 NPP/VIIRS STIRPAT扩展模型 驱动因素 安徽省

国家自然科学基金项目安徽省哲学社会科学规划项目

52008143AHSKY2021D74

2024

地域研究与开发
河南省科学院 地理研究所

地域研究与开发

CSTPCDCHSSCD北大核心
影响因子:1.698
ISSN:1003-2363
年,卷(期):2024.43(1)
  • 41