首页|中国智慧城市建设对碳排放效率影响机制研究

中国智慧城市建设对碳排放效率影响机制研究

扫码查看
聚焦数字生态视角,使用网络分析和指数随机图模型兼顾整体与个体效应,从关联性、动态性和聚集性视角探究中国智慧城市建设对碳排放效率的影响机制.结果表明:(1)从整体网络和个体网络来看,智慧城市建设明显提升碳排放效率网络的指标性能,促进城市间的合作,保证资源的合理分配利用.发达型、资源型城市在网络中占据主导地位,控制能力较大.(2)从网络拓扑结构来看,无标度性质和小世界性质表现不显著,同时东南沿海与华北地区的核心城市的数量逐渐增加,并随着智慧城市建设的逐渐成熟,局部聚集性明显加强.(3)从影响因素来看,互惠性对网络呈正相关;智慧人才对网络的影响最显著;智慧环境、智慧经济和智慧科技的发展对碳排放效率有改善作用,但存在周期性变化,对碳排放效率的影响效果规律性不强.
Impact Mechanism of China's Smart City Construction on Carbon Emission Efficiency
Focusing on the perspective of digital ecology,this paper uses network analysis and exponential random graph model to take into account the overall and individual effects and explores the impact mechanism of China's smart city construction on carbon emission efficiency from the perspectives of relevance,dynamics and ag-gregation.The results show that:(1)From the perspective of the overall network and individual network,the con-struction of smart city significantly improves the index performance of the carbon emission efficiency network,pro-motes the cooperation between cities,and ensures the rational allocation and utilization of resources.Developed and resource-based cities occupy a dominant position in the network and have greater control capabilities.(2)From the perspective of network topology,the scale-free nature and small-world nature are not significant,while the number of core cities in the southeast coastal area and North China gradually increases,and with the gradual maturity of smart city construction,the local agglomeration is significantly strengthened.(3)From the perspective of influen-cing factors,reciprocity has a positive correlation with the network,the impact of smart talents on the network is the most significant,and the development of smart environment,smart economy and smart technology has an improve-ment effect on carbon emission efficiency,but there are periodic changes,and the impact on carbon emission effi-ciency is not regular.

digital ecological perspectivesmart citiescarbon efficiencycomplex network analysisexpo-nential random graph model

王宁宁、王勤升、冯尊

展开 >

北京信息科技大学 信息管理学院,北京 100192

数字生态视角 智慧城市 碳排放效率 复杂网络分析 指数随机图模型

国家自然科学基金北京市社会科学基金北京市教委社会科学研究项目

6157207920JJC023SM202011232008

2024

地域研究与开发
河南省科学院 地理研究所

地域研究与开发

CSTPCDCHSSCD北大核心
影响因子:1.698
ISSN:1003-2363
年,卷(期):2024.43(2)
  • 27