首页|基于DSC-SGRU模型的Wi-Fi手势识别系统研究

基于DSC-SGRU模型的Wi-Fi手势识别系统研究

扫码查看
Wi-Fi无线感知技术已成为感知领域的研究热点,能够实现对人体活动和周围环境的智能感知.现有的无线感知模型参数量较大,在移动设备等算力有限的场景中难以实时感知.为此,提出了一种基于深度可分离卷积的轻量级特征提取模块和堆叠的门控循环单元混合的分类识别模型.首先基于深度可分离卷积构建了轻量的特征提取模块,用以捕获人体手势的空间特征,并保持特征的时序性不发生变化;然后使用双层堆叠的GRU网络学习人体手势的时空特征;最后使用开源数据集Widar对模型的性能进行验证,提取CSI信息中的BVP特征以提高跨域场景的识别准确率,并利用加权的损失函数来解决样本不均衡问题.结果表明,提出的模型在跨域场景下准确率达到 77.6%,参数量仅有 236.891 K.与现有的其他Wi-Fi手势识别模型相比,提出的模型在性能基本保持不变的情况下,极大地降低了模型的参数和计算复杂度,为Wi-Fi无线感知技术在实际应用中的推广奠定了基础.
Research on Wi-Fi gesture recognition system based on DSC-SGRU model
Wi-Fi wireless sensing technology has become a research hotspot in the field of perception,which can realize intelligent perception of human activities and the surrounding environment.The existing wireless sensing models have a large number of parameters,which makes it difficult to sense in real-time in scenarios with limited computing power such as mobile devices.To this end,a classification and recognition model based on a mixture of a lightweight feature extraction module based on depth-separable convolution and a stacked gated recurrent unit is proposed.Firstly,a lightweight feature extraction module based on depth-separable convolution is constructed to capture the spatial features of human gestures and keep the temporal nature of the features unchanged;then the spatio-temporal features of human gestures are learned using a two-layer stacked GRU network;finally,the performance of the model is validated using the open-source dataset Widar,and the BVP features in the CSI information are extracted to improve the recognition of cross-domain scenes accuracy,and a weighted loss function is utilized to solve the sample imbalance problem.The results show that the proposed model achieves an accuracy of 77.6%in cross-domain scenarios with a parameter count of only 236.891 K.Compared with other existing Wi-Fi gesture recognition models,the proposed model greatly reduces the parameters and computational complexity of the model while its performance remains basically unchanged,which lays a foundation for the popularization of the Wi-Fi wireless sensing technology in practical applications.

wireless sensingchannel state informationdeep learninggesture recognitioncross-domain

何育浪、赵志彪、李振、李珊珊

展开 >

天津职业技术师范大学自动化与电气工程学院 天津 300222

天津市信息传感与智能控制重点实验室 天津 300222

无线感知 信道状态信息(CSI) 深度学习 手势识别 跨域

2024

电子测量与仪器学报
中国电子学会

电子测量与仪器学报

CSTPCD北大核心
影响因子:2.52
ISSN:1000-7105
年,卷(期):2024.38(10)