首页|基于随机森林算法的温度校准方法研究

基于随机森林算法的温度校准方法研究

扫码查看
基于热敏电阻NTC在生产过程、储存条件等客观因素的影响下会造成测量精度较低、准确性较低的情况,且传统校准方法受到热敏电阻非线性温度特性的影响,无法满足高精度和高准确性的校准需求,本文提出引进机器学习中的随机森林算法模型,在0~120℃的温度范围实验条件下,将测试数据分为训练集与测试集,有效验证了随机森林模型适用于NTC的温度校准,通过对模型的修改及优化参数,使温度校准精度达到-0。015~0。020℃。
Research on temperature calibration method based on random forest algorithm
Based on the fact that thermistor NTC can cause lower measurement precision and lower accuracy performance under the influence of objective factors such as production process and storage conditions,and that the traditional calibration method is affected by the nonlinear temperature characteristics of thermistor,which can not satisfy the calibration results of high precision and accuracy,this paper proposes to introduce the random forest algorithm model in machine learning,and in the experimental conditions of the temperature range of 0-120℃,the test data are divided into training set and test set,and the random forest model is effectively verified to be suitable for the temperature calibration of NTC,and the temperature calibration accuracy reaches-0.015-0.02℃by modifying the model and optimizing the parameters.

thermistorstemperature calibrationrandom forestsmachine learning

李海浩、黄宴云

展开 >

广东省清远市质量计量监督检测所 清远 511518

广东省新兴县质量技术监督检测所 云浮 527499

热敏电阻 温度校准 随机森林 机器学习

2024

电子测试
北京自动测试技术研究所

电子测试

影响因子:0.332
ISSN:1000-8519
年,卷(期):2024.(1)