首页|布隆过滤器综述

布隆过滤器综述

扫码查看
布隆过滤器是一种基于哈希策略的高效概率型数据结构,其利用位数组简洁地存储集合中的每个元素,无需考虑存储集合中的元素种类和大小。通过对布隆过滤器算法误判率的分析和推导,得到最小误判率和最优散列函数个数,获取布隆过滤器影响因子之间关系。从优化结构、优化哈希策略角度对计数布隆过滤器、布谷鸟过滤器等变种过滤器进行原理性介绍。对布隆过滤器的优化研究是大数据技术的一个重要方向。
Overview of Bloom filter
Bloom filter is an efficient probabilistic data structure based on Hashing strategy and it utilizes bit arrays to succinctly store each element in the set without having to consider the type and size of the elements in the stored set.Through the analysis and derivation of the misjudgment rate of Bloom filter algorithm,we obtain the minimum misjudgment rate and the optimal number of Hash functions,and then obtain the relationship between the Bloom filter influencing factors,and also introduce the principle of counting Bloom filters,cuckoo filters,and other variants of filters from the perspective of optimizing the structure,and the perspective of the optimization of the Hash strategy.Research optimization for Bloom filters remains an important direction in big data technology.

Bloom filterHashing strategybig data technologyfalse positive rate

张佳豪、冯俐

展开 >

新疆理工学院信息工程学院 阿克苏 843000

布隆过滤器 哈希策略 大数据技术 误判率

2024

电子测试
北京自动测试技术研究所

电子测试

影响因子:0.332
ISSN:1000-8519
年,卷(期):2024.(2)