首页|基于卫星遥感的宜宾市NO2时空分布研究

基于卫星遥感的宜宾市NO2时空分布研究

扫码查看
准确掌控区域二氧化氮(NO2)浓度时空分布,对于区域NO2污染防控措施的制定具有重要意义.空气质量监测站点的稀疏且空间分布不均为计算全面域的NO2带来了较大挑战,尤其对于监测站点数量较少的城市.为全面把控四川省宜宾市近年来NO2时空变化特征,研究使用TROPOMI卫星遥感数据,采用基于机器学习的多重插补链式方程(MICE)克服原始观测数据稀疏不均的问题,重构了2019~2021年宜宾市1 km网格NO2小时浓度.基于站点的留出法验证中R2和RMSE分别为 0.67 和 8.4 µg/m3.宜宾市 2019~2021 年各年的人口加权 NO2 浓度([NO2]pw)分别为 19.1±5.5、14.9±5.3 和 14.8± 6.2μg/m3.多年的季均[NO2]pw在冬季最高,其次依次为秋季、春季及夏季.NO2浓度在8:00~10:00和18:00~23:00点呈现出上升趋势,一般夜间NO2污染比白天更严重.翠屏区主城区是宜宾市最主要的NO2污染区域,岷江及长江流域的NO2浓度也较高.在2020年应对COVID-19的全面封控期间,宜宾NO2浓度大幅度降低,[NO2]pw相比2019年降低了约25%.精确的高分辨率NO2时空分布结果可为当地减排策略的制定提供时量化的数据支撑.
Spatiotemporal Distribution of NO2 in Yibin based on Satellite Remote Sensing
Accurate understanding of the spatiotemporal distribution of ambient NO2 is important for implementing air pollution preven-tion and control measures.However,the sparse and uneven distribution of air quality monitoring stations pose a great challenges to esti-mate the full-coverage of NO2,especially for cities with a small number of monitoring stations.In order to comprehensively understand the spatiotemporal variation of NO2 in Yibin,Sichuan Province in recent years,TROPOMI satellite remote sensing data was taken to re-construct the 1 km grid NO2 hourly concentrations in Yibin from 2019 to 2021,taking advantage of machine learning-based multiple in-terpolation chain equations(MICE)to overcome the sparsity and unevenness of the original observation data.The R2 and RMSE were 0.67 and 8.4 μg/m3,respectively,in the site-based holdout-validation.The population-weighted NO2([NO2]pw)in Yibin during 2019-2021 were 19.1±5.5,14.9±5.3 and 14.8±6.2 μg/m3,respectively.The[NO2]pw was the highest in winter,followed by fall,spring,and summer.The hourly NO2 concentration showed an upward trend during 8:00-10:00 a.m.and 6:00-11:00 p.m.and generally NO2 pollution was generally more serious at night than during the day.The main urban area of Cuiping District was the major NO2-polluted area in Yibin.Also,NO2 concentrations were high in the Minjiang and Yangtze River basins.During the COVID-19 lockdown period in 2020,the NO2 levels in Yibin decreased significantly a[NO2]pw decrease by approximately 25%compared to the corresponding period in 2019.Accurate and high-resolution spatiotemporal distributions of NO2 could provide temporal and quantitative data support for implementing emission reduction strategies.

NO2satellite remote sensingmachine learningspatiotemporal distributionYibin

朱瑢昕、米潭、赵贤杰、蒋霞、江水苹、李文秀、周书华、杨复沫、詹宇

展开 >

四川大学,建筑与环境学院,成都 610065

宜宾市生态环境局,四川宜宾 644609

宜宾市环境监测中心站,四川宜宾 644099

二氧化氮 卫星遥感 机器学习 时空分布 宜宾市

国家自然科学基金

22076129

2024

地球与环境
中国科学院地球化学研究所

地球与环境

CSTPCD北大核心
影响因子:0.875
ISSN:1672-9250
年,卷(期):2024.52(2)
  • 49