首页|铁阴极活化过硫酸盐高效去除水中四环素的动力学研究

铁阴极活化过硫酸盐高效去除水中四环素的动力学研究

扫码查看
抗生素广泛存在于地表水和地下水中,对水生环境和人类健康构成了严重威胁,已成为国际公约管控的重要新污染物.高级氧化技术是处理难降解新污染物的有效技术.基于电化学-过硫酸盐的高级氧化技术在抗生素等新污染物治理中受到了广泛关注,但传统铁阳极活化方法仍存在污泥产量大等缺陷.因此,本研究开发了基于铁阴极电化学活化过硫酸盐(PDS)的高级氧化技术,并研究了其对抗生素(四环素)的降解动力学和机理.研究建立了四环素降解的多过程耦合动力学理论模型,模型模拟结果与实验数据基本吻合,结果表明铁阴极体系能高效降解四环素(0.42±0.007 38 M-1·s-1)并降低电极损耗.通过对主控因子的解析,发现PDS浓度、电流大小、初始pH值、初始四环素浓度均能不同程度影响四环素的降解动力学.通过对降解机制研究,发现铁阴极体系中的主要活性氧物种为·SO-4和·OH,它们对四环素降解的贡献分别为28.02%和71.98%.研究结果为应用铁阴极-过硫酸盐技术高效治理抗生素等新污染物提供了重要支撑.
Kinetics Study on Efficient Removal of Tetracycline in Water by Iron Cathodic Activated Persulfate
Antibiotics are widely present in surface water and groundwater,posing a serious risk to aquatic environments and human health,and have become important new pollutants under international conventions.Advanced oxidation technologies are effective for treating refractory new pollutants.The electrochemical activation of persulfate-based advanced oxidation technology has received wide-spread attention in the treatment of antibiotics and other new pollutants,but traditional iron anode activation methods still suffer from high sludge production and other deficiencies.Therefore,this study developed an advanced oxidation technology based on the electro-chemical activation of peroxydisulfate(PDS)using an iron cathode,and investigated its degradation kinetics and mechanisms on tetra-cycline.The study established a multi-process coupled kinetic theoretical model for tetracycline degradation,and the simulation results were in good agreement with the experimental observations.The results indicated that the iron cathode system could effectively degrade tetracycline(0.42±0.007 38 M-1·s-1)and reduce electrode losses.Through the analysis of key factors,it was found that sulfate con-centration,current magnitude,initial pH value,and initial tetracycline concentration could all affect the degradation kinetics of tetracy-cline to varying degrees.Inspection of degradation mechanisms revealed that the main active oxygen species in the iron cathode system were SO4 and OH,contributing 28.02%and 71.98%,respectively,to the degradation of tetracycline.These findings provide im-portant support for the efficient treatment of antibiotic and other new pollutants using the iron cathode-persulfate technology.

antibioticsiron cathodepersulfatekinetics modelemerging contaminants

张双龙、李倩倩、钱傲、谢世伟、廖鹏

展开 >

中国科学院地球化学研究所环境地球化学国家重点实验室,贵阳 550081

中国科学院大学,北京 100049

舍布鲁克大学土木与建筑工程系,舍布鲁克J1K 2R1

江汉大学环境与健康学院,武汉 430056

武汉科技大学城市建设学院,武汉 430081

展开 >

抗生素 铁阴极 过硫酸盐 动力学模型 新污染物

国家自然科学基金项目贵州省科技支撑项目贵州省科技计划项目

U1612441黔科合支撑2022-217黔科合成果2023重大006

2024

地球与环境
中国科学院地球化学研究所

地球与环境

CSTPCD北大核心
影响因子:0.875
ISSN:1672-9250
年,卷(期):2024.52(4)
  • 5