首页|基于隐私保护联邦学习的工业表面缺陷检测

基于隐私保护联邦学习的工业表面缺陷检测

扫码查看
本文针对工业缺陷检测中需要多方数据集中和安全隐私的需求,提出了一种基于隐私保护联邦学习的工业缺陷检测框架.该框架利用多个分布式设备各自捕获产品图像来识别缺陷,再添加高斯噪声后聚合至中央服务器,弥补传统方式下将原始数据传输到服务器而存在的数据不安全性、增加通信负担等问题.实验结果证实,采用多站点全局模型和高斯差分隐私加密处理后,比经典FRCN方法的测试结果提高0.7 mAP,实现了可与传统集中式方法相比的缺陷检测精度,为工业信息化协作和个体数据保护提供了一种解决方案.
Industrial Surface Defect Detection Based on Privacy Protection Federal Learning
Aiming at the needs of multi-party data centralization and security privacy in industrial defect detection,this paper proposes a federated learning industrial defect detection framework based on privacy pro-tection.This framework uses multiple distributed devices to capture product images to identify defects,and then adds Gaussian noise to the central server to make up for the data insecurity and increased communication burden of transferring the original data to the server in the traditional way.The experimental results confirm that after using the multi-site global model and Gaussian differential privacy encryption processing,the test re-sults are 0.7 mAP higher than the classical FRCN method,realizing the defect detection accuracy that can be compared with the traditional centralized method,and provide a solution for industrial information collaboration and individual data protection.

defect detectionfederated learningcentralized serverprivacy protection

李小琴、张月芹、张微

展开 >

南京信息职业技术学院智能制造学院,南京,210023

缺陷检测 联邦学习 集中式服务器 隐私保护

江苏省高等学校基础科学(自然科学)研究项目南京信息职业技术学院高层次人才项目(自然科学类)

22KJB460031YB20220202

2024

信息化研究
江苏省电子学会

信息化研究

影响因子:0.218
ISSN:1674-4888
年,卷(期):2024.50(2)
  • 15