首页|基于残差网络和注意力机制的阿尔兹海默病分类

基于残差网络和注意力机制的阿尔兹海默病分类

扫码查看
本研究针对目前在阿尔茨海默病(AD)、轻度认知障碍(MCI)和正常对照组(NC)分类模型中普遍存在的多依赖于二维的核磁共振成像数据切片,难以全面捕捉大脑的细节信息,而使用三维图像数据时准确率低的问题进行探讨.本文提出了一种创新方法,采用三维脑部核磁共振成像数据,结合通道注意力机制和深度残差网络构建了一种新的分类模型.通过在残差网络中引入通道注意力模块,使模型能够更加聚焦于关键特征,同时忽略不相关的背景信息.此外,最后两个残差模块采用深度可分离卷积替代传统卷积,有效减少了模型参数,降低过拟合风险.经实验验证,该模型在AD/NC分类上达到了 87.12%的准确率,在AD/MCI/NC三分类问题上也取得了 61.60%的准确率,均显著优于现有的其他模型.这不仅提升了 AD分类的准确性,还简化了数据预处理流程,对未来的AD诊断与研究具有重要意义.
Classification of Alzheimer's Disease Based on Residual Network and Attention Mechanism
This study addresses the problem of relying mostly on two-dimensional slices of MRI data,which is difficult to fully capture the detailed information of the brain,and the low accuracy when using three-dimensional image data,which is prevalent in the current classification models for Alzheimer's disease(AD),Mild Cognitive Impairment(MCI),and Normal Controls(NC).In this paper,we propose an innovative ap-proach to construct a new classification model using 3D brain MRI data,combining the channel attention mech-anism and deep residual networks.By introducing a channel attention module in the residual network,the mod-el is able to focus more on key features while ignoring irrelevant background information.In addition,the last two residual modules use deep separable convolution instead of traditional convolution,which effectively re-duces the model parameters and lowers the risk of overfitting.Experimentally verified,the model achieves 87.12%accuracy on AD/NC classification and 61.60%accuracy on AD/MCI/NC triple classification problem,which are significantly better than other existing models.This not only improves the accuracy of AD classifica-tion,but also simplifies the data preprocessing process,which is of great significance for future AD diagnosis and research.

residual networkattention moduleAlzheimer's diseaseconvolutional neural networks

崔雅楠、杨旬

展开 >

西安石油大学计算机学院,西安,710065

残差网络 注意力模块 阿尔兹海默病 卷积神经网络

2024

信息化研究
江苏省电子学会

信息化研究

影响因子:0.218
ISSN:1674-4888
年,卷(期):2024.50(2)
  • 16