首页|基于时域可变形卷积的视频超分辨率重建

基于时域可变形卷积的视频超分辨率重建

扫码查看
视频资源随着技术发展在近年来得到了海量增长,人们除了对视频资源本身的需求外,提升视频清晰度的需求也逐渐增多.本文针对当前视频超分辨率重建方法中对视频参考帧与支持帧(相邻帧)之间的信息利用不充分的问题,提出一种基于深度学习的利用可变形卷积提取在不同时间间隔内特征的算法,依此完成超分辨率重建.算法将视频拆分的图像帧分为不同时域组,利用可变形卷积提取各时域组特征,结合可分离的3D卷积对各时域组进行组内特征融合,最后结合时空注意力模块将时域组间的特征融合,通过亚像素卷积完成分辨率的提升.根据在视频超分辨率重建的公开数据集上的实验结果可知,本文提出的算法效果优于VSRnet和VESPCN等其他视频重建算法,能够有效地提升重建视频的清晰度.
Video Super-Resolution Reconstruction Based On Time-Domain Deformable Convolution
With the development of technology in recent years,video resources have increased dramatical-ly.In addition to the demand for video resources themselves,the demand for improving video clarity has also gradually increased.Aiming at the problem that the information between reference frames and supporting frames(adjacent frames)is not sufficiently utilized in current video super-resolution reconstruction methods,this paper proposes an algorithm that uses deformable convolution to extract features at different time intervals to complete super-resolution reconstruction.The algorithm divides the video split image frames into different time domain groups,extracts the features of each time domain group by using deformable convolution,fuses the features of each time domain group with separable 3D convolution,and finally fuses the features of each time domain group with spatiotemporal attention module,and improves the resolution through subpixel convo-lution.According to the experimental results on the open data set of video super-resolution reconstruction,the algorithm proposed in this paper is superior to other video reconstruction algorithms such as VSRnet and VESPCN,and can effectively improve the definition of reconstructed video.

video super-resolutiondeep learningdeformable convolution3D convolutionspatiotempo-ral attention mechanism

唐晓天、刘潇

展开 >

商丘职业技术学院计算机工程学院,商丘,476000

视频超分辨率重建 深度学习 可变形卷积 3D卷积 时空注意力机制

2024

信息化研究
江苏省电子学会

信息化研究

影响因子:0.218
ISSN:1674-4888
年,卷(期):2024.50(2)
  • 16