首页|DSLK-UNet:多尺度与大核卷积改进的皮肤病变分割

DSLK-UNet:多尺度与大核卷积改进的皮肤病变分割

扫码查看
皮肤病变分割是皮肤病诊断的必要步骤.受病变区域形状不规则、颜色不均匀,以及边界模糊等因素的影响,皮肤病变分割面临诸多困难.针对上述问题,本文提出DSLK-UNet(Dilation Stage Large Kernel UNet)的皮肤病变分割方法.为充分利用多尺度信息,设计了空洞阶梯连接模块,并将其嵌入到编码器和解码器,实现上下文信息的有效捕获;综合考虑效率和性能,基于深度和空间可分离卷积提出一种大核卷积融合模块,优化小目标细节信息的提取;最后,基于Laplace算法构建边缘损失函数,提高模型对弱边界的检测能力.为验证本文算法有效性,在ISIC 2018数据集上进行测试,实验结果表明,该方法可以有效分割皮肤病变,分割结果的相似系数(Dice)、平均交并比(MIoU)、准确率(ACC)和F1-Score分别达到了92.86%、89.10%、97.00%和89.28%,分割性能高于现有的皮肤病变分割算法,且相较于其他方法,该方法对于受毛发干扰、边界模糊的皮肤病变具有分割优势.
DSLK-UNet:Improved Skin Lesion Segmentation Algorithm
Skin lesion segmentation is a necessary step in the diagnosis of skin diseases.Affected by the irregular shape of the lesion area,uneven color,and fuzzy boundary,it is very difficult to accurately segment skin lesion.To address this problem,the paper proposes DSLK LK-UNet(Dilation Stage Large Kernel UNet)for skin lesion segmentation.To fuse the multi-scale information,a cavity step connection module is designed and embedded into the encoder and decoder module for effective capture the contextual information.Then,an efficient convolution module based on large kernel convolution fusion(LKF)is proposed to optimize the extrac-tion of the detail information of the small targets.Finally,an edge loss function based on Laplace is used to im-prove the detection of the skin lesion with weak boundaries.Experimental results tested on the ISIC 2018 data set show that the proposed method effectively segment skin lesions,and receives an average similarity coeffi-cient(Dice),mean intersection over union(MIoU),accuracy and F1-Score of 92.86%,89.10%,97.00%and 89.28%,respectively,which is superior to some existing segmentation methods.In addition,it also shows its good performance on the detection of the lesion region with weak boundaries.Compared with other segmenta-tion method,the proposed method has advantages in segmenting skin lesions with blurred edge and low con-trast.

image processingskin lesion segmentationmulti-scale fusionlarge kernel convolutionUNet

邓倩、曾业战、陈天航、钟春良

展开 >

湖南工业大学轨道交通学院,株洲,412007

湖南工业大学电气与信息工程学院,株洲,412007

湖南工业大学生命科学与化学学院,株洲,412007

图像处理 皮肤病变分割 多尺度融合 大核卷积 UNet

湖南省自然科学基金湖南省自然科学基金

2020JJ42762021JJ30275

2024

信息化研究
江苏省电子学会

信息化研究

影响因子:0.218
ISSN:1674-4888
年,卷(期):2024.50(4)
  • 5