首页|基于深度学习的雷达干扰信号分类与抑制方法研究

基于深度学习的雷达干扰信号分类与抑制方法研究

扫码查看
本文在深度学习方法应用下提出一种雷达干扰信号分类以及抑制方法.首先在卷积神经网络应用下实现对雷达干扰信号的自动分类,分别为卷积层、池化层以及全连接层,训练完成后得到分类模型.基于此实现关于去干扰网络的设计,进而在重构损失函数应用下去干扰信号.完成设计后,进行实验研究,共选取4类干扰信号以及雷达信号,结果显示本文方法在雷达信号分类中的准确率可以达到96.3%,同时能够保留有效信号,信噪比可以提升到5 dB以上,降噪后数据准确率达到98.2%,可见这一方法不但能够实现雷达干扰信号的自动分类,同时也能够产生有效抑制作用,可以取得良好的降噪效果,更有助于实施雷达信号处理.
Research on Radar Jamming Signal Classification and Suppression Method Based on Deep Learning
In this paper,a radar interference signal classification and suppression method is proposed un-der the application of deep learning method.Firstly,the automatic classification of radar interference signals is realized under the application of convolutional neural network.It is mainly divided into three layers,namely convolution layer,pooling layer and fully connected layer.After training,the classification model is obtained.Based on this,the design of the de-interference network is realized,and then the interference signal is applied in the reconstruction loss function.After the design is completed,the experimental research is carried out,and a total of 4 types of interference signals and radar signals are selected.The results show that the accuracy of this method in radar signal classification can reach 96.3%,and the effective signal can be retained.The signal-to-noise ratio can be increased to more than 5 dB,and the accuracy of data after noise reduction can reach 98.2%.It can be seen that this method can not only realize the automatic classification of radar interference signals,but also can effectively suppress them,and can achieve good noise reduction effect,which is more conducive to the implementation of radar signal processing.

deep learningconvolutional neural networkradar interference signalclassificationinfer-ence elimination

申振、苟亮、魏红艳、白传芳

展开 >

南京浩谱科技有限公司,南京,211899

北京信息技术研究所,北京,100094

大唐联诚信息系统技术有限公司,北京,100191

深度学习 卷积神经网络 雷达干扰信号 分类 去干扰

国家自然科学基金

91738201

2024

信息化研究
江苏省电子学会

信息化研究

影响因子:0.218
ISSN:1674-4888
年,卷(期):2024.50(4)
  • 5