首页|基于自训练半监督神经网络的结构损伤识别

基于自训练半监督神经网络的结构损伤识别

扫码查看
为解决结构损伤识别中标签样本不足的问题,提出一种基于自训练半监督神经网络(self-training semi-supervised neural networks,SSNN)的结构损伤识别框架,该框架利用自训练半监督方法对多层感知机(multilayer perceptron,MLP)神经网络进行训练,从无标签样本中挑选置信度高的样本标注伪标签,扩大样本训练集,并采用归一化频率变化率和损伤特征指数作为输入特征,用于识别结构损伤.首先,介绍自训练半监督学习的基本理论和方法;其次,从神经网络构建、损伤特征提取、分类器评估等方面,给出结构损伤识别流程;最后,通过空间桁架的数值案例及 3 层框架的试验数据,验证所提出的损伤识别方法.结果表明:自训练半监督学习能够从无标签样本中选取置信度较高的样本,为损伤识别提供更充足的有标签样本;在标记样本不足的条件下,SSNN比MLP神经网络的损伤识别效果更好;相较于MLP 神经网络,SSNN在单一位置损伤工况下,识别准确率提升约4%,2 个位置损伤识别准确率提升约 9%.
Structural damage identification based on self-training semi-supervised neural network
A structural damage recognition framework based on a self-training semi-supervised neural network(SSNN)is proposed to solve the problem of insufficient labeled data in structural damage identification.The framework utilizes the multilayer perceptron(MLP)neural network for semi-supervised training by the self-training method.The data samples with high confidence are selected from the unlabeled data to make pseudo labels,expanding the training set.Normalized frequency change ratio and damage signature index are employed as input features of neural networks to identify structural damage.Firstly,the theory fundamentals of semi-supervised self-training learning are introduced.Secondly,the procedure of structural damage identification based on self-training semi-supervised learning,including neural network construction,damage characteristic extraction,and classifier evaluation,is introduced.Finally,the proposed damage identification method is illustrated by numerical simulation of a spatial truss and experimental data of a three-story frame.The results show that the self-training semi-supervised method can expand the labeled sample data by selecting samples with higher confidence from unlabeled data,thus providing sufficient labeled data for damage identification.Under the insufficient labeled data conditions,the SSNN performs better than MLP.Compared with MLP,SSNN increases the identification accuracy by 4%and 9%under the single and two positions damage locations,respectively.

structural damage identificationsemi-supervised learningself-trainingpseudo labelneural network

秦世强、杨睿、苏晟

展开 >

武汉理工大学 土木工程与建筑学院,湖北 武汉 430070

结构损伤识别 半监督学习 自训练 伪标签 神经网络

国家自然科学基金项目

51608408

2024

地震工程与工程振动
中国力学学会 中国地震局工程力学研究所

地震工程与工程振动

CSTPCD北大核心
影响因子:0.658
ISSN:1000-1301
年,卷(期):2024.44(2)
  • 30