首页|基于多输入卷积神经网络隔震支座沉降识别

基于多输入卷积神经网络隔震支座沉降识别

扫码查看
为了避免地基不均匀沉降导致隔震支座沉降以及对上部结构造成的隐性损伤,针对隔震支座沉降识别方法进行研究,提出一种基于多输入卷积神经网络(multi-input convolutional neural network,MI-CNN)的隔震支座振动信号识别模型.首先,采集隔震支座水平方向加速度和位移信号,采用归一化预处理和数据增强方法扩充样本;然后,将样本输入到所建立的网络模型中并进行训练;最后,利用完成训练的网络模型进行沉降识别.结果表明:相较于传统单输入卷积神经网络(Convolutional neural network,CNN)模型,MI-CNN模型易于训练,可最大程度地发挥CNN对沉降信号特征的提取能力,且具有更好的沉降位置识别准确率和更小的沉降程度识别误差,以及针对不均衡数据集更稳定的识别效果.研究结果可为隔震支座沉降识别提供新思路.
Seismic isolation bearing settlement recognition based on multi-input convolutional neural network
In order to avoid the settlement of seismic isolation bearings caused by uneven foundation settlement and the hidden damage to the superstructure,a vibration signal identification model based on multi-input convolutional neural network(MI-CNN)is proposed to identify the settlement of seismic isolation bearings.First,the horizontal acceleration and displacement signals of seismic isolation bearings are collected,and the samples are expanded using normalised pre-processing and data enhancement methods.Then,the samples are fed into the established network model and trained.Finally,the settlement identification is performed using the trained network model.The results show that compared with the traditional single-input CNN model,the MI-CNN model is easier to train and can maximise the ability of CNN to extract features from the settlement signals,and it has a better accuracy in identifying the settlement location,a smaller error in identifying the settlement degree,and a more stable identification effect for the unbalanced data set.The results of this study can provide new ideas for the settlement identification of seismic isolation bearings.

convolutional neural networkisolation bearingunbalanced datasetsettlement identification

赵丽洁、李纯、沈金生、王昊

展开 >

河北工程大学 土木工程学院,河北 邯郸 056038

天津农学院 水利工程学院,天津 300392

天津城建大学 土木工程学院,天津 300384

卷积神经网络 隔震支座 不均衡数据集 沉降识别

国家自然科学基金项目

52208193

2024

地震工程与工程振动
中国力学学会 中国地震局工程力学研究所

地震工程与工程振动

CSTPCD北大核心
影响因子:0.658
ISSN:1000-1301
年,卷(期):2024.44(4)
  • 8