首页|基于机器学习的填充墙RC框架震后损伤快速评估

基于机器学习的填充墙RC框架震后损伤快速评估

扫码查看
填充墙钢筋混凝土(reinforced concrete,RC)框架是最常见的结构形式之一,实际震害和试验研究中发现填充墙对RC框架的抗震性能影响很大.为实现填充墙RC框架震后损伤状态准确、快速评估,首先根据不同的建筑结构信息(设防烈度、建造年代、层数、层高、跨数和填充率)设计了660个填充墙RC框架,结合10条地震动在OpenSees中对660个结构进行非线性时程分析,得到了6600个数据点,形成了填充墙RC框架震损评估模型建立的数据集.基于该数据集,采用朴素贝叶斯(naive Bayes,NB),K最近邻(K-nearest neighbors,KNN),决策树(decision tree,DT),人工神经网络(artificial neural network,ANN),随机森林(random forest,RF),自适应提升(adaptive boosting,AdaBoost),极端梯度提升(extreme gradient boosting,XGBoost),轻量级梯度提升(light gradient boosting machine,LightGBM),类别提升(category boosting,CatBoost)共9种机器学习的算法,建立了预测填充墙RC框架震后损伤的预测模型.研究结果表明:RF和CatBoost模型对损伤等级预测的精度最高,在测试集的准确率均达到0.93.紧随其后的是LightGBM和XGBoost模型,这些模型的准确率均超过了0.90.与实际震损数据对比,RF和CatBoost模型预测准确率均为47%,但CatBoost模型的预测误差在1个损伤等级范围内的准确率为76%,高于RF模型.基于CatBoost模型进行了不同输入变量的重要性分析,发现对填充墙RC框架震损影响最大的是设防烈度(seismic design intensity,SDI)、峰值地面速度(peak ground velocity,PGV)、0.4 s的谱加速度Sa(0.4 s).此外,随着结构层数越多,楼层数量(ns)对结构的震损等级影响也越大.
Rapid seismic damage state assessment of infilled RC frames using machine learning methods
Infilled reinforced concrete (RC) frame structures are one of the most common structures.It is found that infilled walls have a significant impact on seismic performance of RC frames in past earthquake damage investigations and experimental tests.To accurately and rapidly assess seismic damage states of infilled RC frames after an earthquake,660 infilled RC frames were firstly designed based on different building structure information (i.e.the seismic design intensity,constructed period,number of stories,story height,number of bays and the filling rate),then the non-linear time history analysis was performed for the 660 infilled RC frames with 10 ground motions in OpenSees.6600 data points were gained from the analysis,resulting in a dataset which was used to develop seismic damage state assessment models of infilled RC frames.Based on the dataset,nine machine learning models predicting seismic damage states of infilled RC frames were developed using naive Bayes (NB),K-nearest neighbors (KNN),decision tree (DT),artificial neural network (ANN),random forest (RF),adaptive boosting (AdaBoost ),extreme gradient boosting (XGBoost ),light gradient boosting machine (LightGBM ),category boosting (CatBoost ) algorithms.The results indicated that CatBoost and RF models had the highest prediction accuracy for the seismic damage state which was 0.93 in testing dataset,followed by LightGBM and XGBoost models with an accuracy of exceeding 0.90.Compared with actual damage investigated in the past earthquakes indicating that RF and CatBoost models achieved an identical accuracy of 47%.However,the difference in the remain damage states within one damage state level occupied 76% for CatBoost model,which was higher than that of RF model.Based on the CatBoost,importance analysis was performed for different input variables.It is found that three input variables had the greatest impact on infilled RC frame,including seismic design intensity (SDI),peak ground velocity (PGV) and the spectral acceleration at Sa(0.4 s).Furthermore,the importance of the number of stories on the seismic damage state for infilled RC frames increased as the increase of the number of stories.

infilled RC framesmachine learningdamage statedamage assessmentfinite element model

何坫锦、程小卫、李易、张豪友、凡亨通

展开 >

北京工业大学 城市与工程安全减灾教育部重点实验室,北京100124

填充墙RC框架 机器学习 损伤状态 损伤评估 有限元模型

国家自然科学基金项目北京市科技新星计划项目北京市教委项目

52108429Z211100002121097KM202210005018

2024

地震工程与工程振动
中国力学学会 中国地震局工程力学研究所

地震工程与工程振动

CSTPCD北大核心
影响因子:0.658
ISSN:1000-1301
年,卷(期):2024.44(5)