首页|基于U-Net与SAM模块的睡眠呼吸暂停检测分析

基于U-Net与SAM模块的睡眠呼吸暂停检测分析

扫码查看
阐述一种基于脉搏血氧饱和度(SpO2)的U-Net模型,通过编码一解码结构提取血氧信号的多层次特征.使用SAM模块,自适应地提高氧减事件的权重.在SleepApnea-ECG数据集进行交叉验证,平均准确性、灵敏度、特异性分别为95.69%、95.52%、95.59%,与其他模型对比有更高的检测精度.
Analysis of Sleep Apnea Detection Based on U-Net and SAM Module
This paper describes a U-Net model based on pulse oxygen saturation(SpO2),which extracts multi-level features of blood oxygen signals through an encoding decoding structure.It uses the SAM module to adaptively increase the weight of oxygen reduction events.Cross validation was performed on the SleepApnea ECG dataset,with an average accuracy,sensitivity,and specificity of 95.69%,95.52%,and 95.59%,respectively,indicating higher detection accuracy compared to other models.

detection technologyU-Netpulse oxygen saturationSAM module

谢仕宇、杨其宇

展开 >

广东工业大学,广东 510006

检测技术 U-Net 脉搏血氧饱和度 SAM模块

2024

电子技术
上海市电子学会,上海市通信学会

电子技术

影响因子:0.296
ISSN:1000-0755
年,卷(期):2024.53(2)
  • 4