首页|基于Mean Teacher的半监督左心房分割算法分析

基于Mean Teacher的半监督左心房分割算法分析

扫码查看
阐述基于Mean Teacher设计一种新的半监督分割框架,用于从3D MRI图像中分割出左心房.它使用改进的V-Net网络作为骨干网络,缓解原始模型计算时参数过多、计算量过大的状况,结合置信学习模块来解决噪声标签导致的分割性能下降问题.该方法相较其他半监督方法,具有更好的分割效果.
Analysis of Semi supervised Left Atrial Segmentation Algorithm Based on Mean Teacher
This paper expounds the design of a new semi supervised segmentation framework based on Mean Teacher for segmenting the left atrium from 3D MRI images.It uses an improved V-Net network as the backbone network to alleviate the problem of excessive parameters and computational complexity in the original model calculation,and combines confidence learning modules to solve the problem of segmentation performance degradation caused by noisy labels.This method has better segmentation performance compared to other semi supervised methods.

semi supervised learningMean Teacher modelleft atrial segmentation

宋鑫、孙鹏、苏云天、黄杰、陈真诚

展开 >

桂林电子科技大学电子工程与自动化学院,广西 541004

半监督学习 Mean Teacher模型 左心房分割

国家基金委区域创新联合基金重点项目广西科技厅创新驱动发展专项项目

U22A2092GuikeAA19254003

2024

电子技术
上海市电子学会,上海市通信学会

电子技术

影响因子:0.296
ISSN:1000-0755
年,卷(期):2024.53(2)
  • 3