首页|基于YOLOv5s的林业害虫目标检测方法分析

基于YOLOv5s的林业害虫目标检测方法分析

扫码查看
阐述一种基于YOLOv5s模型的林业害虫目标检测方法,采用五类林业害虫的数据集对模型进行训练.实验结果分析表明,该模型能够较为准确地检测以及识别分类出小目标、多目标以及常态下的五类害虫图像.在对于图像预处理方面,实验使用多种数据增强的方法,有效地提高模型的泛化能力以及鲁棒性,对于提出的林业害虫目标检测模型具有良好的检测效果.
Analysis of Forest Pest Target Detection Method Based on YOLOv5s
This paper describes a forestry pest target detection method based on the YOLOv5s model,which is trained on a dataset of five types of forestry pests.The analysis of experimental results shows that the model can accurately detect and classify five types of pest images,including small targets,multiple targets,and normal conditions.In terms of image preprocessing,various data augmentation methods were used in the experiment,which effectively improved the model's generalization ability and robustness,and had a good detection effect on the proposed forestry pest target detection model.

computer technologyYOLOv5spest recognitionobject detectiondeep learning

陈中垚

展开 >

广东理工学院,广东 526100

计算机技术 YOLOv5s 害虫识别 目标检测 深度学习

2024

电子技术
上海市电子学会,上海市通信学会

电子技术

影响因子:0.296
ISSN:1000-0755
年,卷(期):2024.53(3)
  • 7