首页|基于深度学习的人脸表情识别技术分析

基于深度学习的人脸表情识别技术分析

扫码查看
阐述一种新的基于深度学习的表情识别方法,可以对已有表情识别方法中的特征提取进行优化,采用神经网络(NN)和支持向量机(SVM)的集成分类器对正常、快乐、悲伤、惊讶、恐惧和愤怒等面部表情进行分类,并使用JAFFE、CK+、Pie数据集和一些真实世界的图像评估所提出优化算法的性能.
Analysis of Facial Expression Recognition Technology Based on Deep Learning
This paper describes a new deep learning based expression recognition method that can optimize feature extraction in existing expression recognition methods.An integrated classifier of neural networks(NN)and support vector machines(SVM)is used to classify facial expressions such as normal,happy,sad,surprised,fearful,and angry.The performance of the proposed optimization algorithm is evaluated using JAFFE,CK+,Pie datasets,and some real-world images.

facial expression recognitiondeep learningensemble learningconvolutional neural networks

赵彬宇

展开 >

吉林大学珠海学院,广东 519040

人脸表情识别 深度学习 集成学习 卷积神经网络

2024

电子技术
上海市电子学会,上海市通信学会

电子技术

影响因子:0.296
ISSN:1000-0755
年,卷(期):2024.53(3)
  • 10