首页|基于关系型T5和重排名解码的Text-to-SQL方法分析

基于关系型T5和重排名解码的Text-to-SQL方法分析

扫码查看
阐述针对Text-to-SQL任务,构建一个带有重排名解码模块的关系型T5模型.将关系感知的自我注意模块引入T5编码器,以此提高模型对各种关系结构的语义理解能力.在解码过程中,对PICARD获得的N-best列表引入重排名解码,可通过搜寻算法,检查列表中的每个预测实体名称是否在数据库中出现,以提高结果的选择正确性.
Analysis of Text to SQL Method Based on Relational T5 and Reordering Decoding
This paper expounds that a relational T5 model with a re-ranking decoding module is constructed for the Text-to-SQL task.Specifically,introduces a relationship-aware self-attentive module into the T5 encoder as a way to improve the model's semantic understanding of various relationship structures.In addition,in the decoding process,this paper introduces re-ranking decoding to the N-best list obtained by PICARD,which can be used to check whether the entity name in each prediction in the list appears in the database by a search algorithm to improve the correctness of the selection of results.

intelligent algorithmsText-to-SQLsemantic parsingrelational graph attention network

杨智慧

展开 >

中国科学技术大学,安徽 230026

智能算法 文本到SQL 语义解析 关系图注意力网络

2024

电子技术
上海市电子学会,上海市通信学会

电子技术

影响因子:0.296
ISSN:1000-0755
年,卷(期):2024.53(4)